scholarly journals Enhancing the Kerr nonlinearity in SiN nanowires with graphene oxide films

Author(s):  
David Moss

Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D graphene oxide (GO) films is experimentally demonstrated. We achieve a high conversion efficiency improvement of ~7.3 dB for a 2-cm-long waveguide with monolayer GO film.

2020 ◽  
Author(s):  
David Moss

Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D graphene oxide (GO) films is experimentally demonstrated. We achieve a high conversion efficiency improvement of ~7.3 dB for a 2-cm-long waveguide with monolayer GO film.


2020 ◽  
Author(s):  
David Moss

Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D graphene oxide (GO) films is experimentally demonstrated. We achieve a high conversion efficiency improvement of ~7.3 dB for a 2-cm-long waveguide with monolayer GO film.


2020 ◽  
Author(s):  
David Moss

<a>Two-dimensional </a>layered graphene oxide films are integrated with micro-ring resonators to experimentally demonstrate enhanced four-wave mixing, achieving up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated device and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

<a>Two-dimensional </a>layered graphene oxide films are integrated with micro-ring resonators to experimentally demonstrate enhanced four-wave mixing, achieving up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated device and ~10.3-dB for a patterned device.


2020 ◽  
Author(s):  
David Moss

We experimentally demonstrate enhanced four-wave mixing in micro-ring resonators (MRRs) integrated with graphene oxide films. We achieve up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated MRR and ~10.3-dB for a patterned device.


2020 ◽  
Vol 8 (23) ◽  
pp. 2001048 ◽  
Author(s):  
Yang Qu ◽  
Jiayang Wu ◽  
Yunyi Yang ◽  
Yuning Zhang ◽  
Yao Liang ◽  
...  

2020 ◽  
Author(s):  
David Moss

Two-dimensional layered graphene oxide films are integrated with micro-ring resonators to experimentally demonstrate enhanced four-wave mixing, achieving up to ~7.6-dB enhancement in conversion efficiency for a uniformly coated device and ~10.3-dB for a patterned device.


2021 ◽  
Author(s):  
David Moss

We theoretically investigate and optimize four-wave mixing (FWM) in silicon nitride (SiN) waveguides integrated with two-dimensional (2D) layered graphene oxide (GO) films. Based on extensive previous measurements of the material parameters of the GO films, we perform detailed analysis for the influence of device parameters including waveguide geometry, GO film thickness, length, and coating position on the FWM conversion efficiency (CE) and conversion bandwidth (CB). The influence of dispersion and photo-thermal changes in the GO films is also discussed. Owing to the strong mode overlap between the SiN waveguides and the highly nonlinear GO films, FWM in the hybrid waveguides can be significantly enhanced. We obtain good agreement with previous experimental results and show that by optimizing the device parameters to balance the trade-off between Kerr nonlinearity and loss, the FWM CE can be improved by as much as ~20.7 dB and the FWM CB can be increased by ~4.4 folds, relative to the uncoated waveguides. These results highlight the significantly enhanced FWM performance that can be achieved in SiN waveguides by integrating 2D layered GO films.


2016 ◽  
Vol 24 (2) ◽  
pp. 1008 ◽  
Author(s):  
Chin-Yuan Lee ◽  
Bo-Han Wu ◽  
Gang Wang ◽  
Yong-Fang Chen ◽  
Ying-Cheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document