Blur Removal and Quality Enhancement for Reconstructed Images in Dynamic Single-pixel Imaging

Author(s):  
Shuming Jiao ◽  
Mingjie Sun ◽  
Yang Gao ◽  
Ting Lei ◽  
Zhenwei Xie ◽  
...  
2019 ◽  
Vol 27 (9) ◽  
pp. 12841 ◽  
Author(s):  
Shuming Jiao ◽  
Mingjie Sun ◽  
Yang Gao ◽  
Ting Lei ◽  
Zhenwei Xie ◽  
...  

Author(s):  
Aleksandr Chemodanov ◽  
Evgenii Iamshchikov ◽  
Roman Lozhkin ◽  
Aleksandr Turuev

2009 ◽  
Vol 129 (6) ◽  
pp. 593-600 ◽  
Author(s):  
Yuichiro Tokuda ◽  
Gosuke Ohashi ◽  
Masato Tsukada ◽  
Reiichi Kobayashi ◽  
Yoshifumi Shimodaira

2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


2014 ◽  
pp. 349-354 ◽  
Author(s):  
A. Yanushkevich ◽  
Z. Müller ◽  
J. Švec ◽  
J. Tlustý ◽  
V. Valouch

2019 ◽  
Vol 8 (4) ◽  
pp. 9548-9551

Fuzzy c-means clustering is a popular image segmentation technique, in which a single pixel belongs to multiple clusters, with varying degree of membership. The main drawback of this method is it sensitive to noise. This method can be improved by incorporating multiresolution stationary wavelet analysis. In this paper we develop a robust image segmentation method using Fuzzy c-means clustering and wavelet transform. The experimental result shows that the proposed method is more accurate than the Fuzzy c-means clustering.


Sign in / Sign up

Export Citation Format

Share Document