Detection of coherent movement in peripherally viewed random-dot patterns

1983 ◽  
Vol 73 (12) ◽  
pp. 1674 ◽  
Author(s):  
W. A. van de Grind ◽  
A. J. van Doorn ◽  
J. J. Koenderink
Keyword(s):  
1994 ◽  
Vol 34 (19) ◽  
pp. 2561-2568 ◽  
Author(s):  
Frans W. Cornelissen ◽  
Aart C. Kooijman
Keyword(s):  

Perception ◽  
1995 ◽  
Vol 24 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Johannes M Zanker

The subjective strength of a percept often depends on the stimulus intensity in a nonlinear way. Such coding is often reflected by the observation that the just-noticeable difference between two stimulus intensities (JND) is proportional to the absolute stimulus intensity. This behaviour, which is usually referred to as Weber's Law, can be interpreted as a compressive nonlinearity extending the operating range of a sensory system. When the noise superimposed on a motion stimulus is increased along a logarithmic scale (in order to provide linear steps in subjective difference) in motion-coherency measurements, observers often report that the subjective differences between the various noise levels increase together with the absolute level. This observation could indicate a deviation from Weber's Law for variation of motion strength as obtained by changing the signal-to-noise ratio in random-dot kinematograms. Thus JNDs were measured for the superposition of uncorrelated random-dot patterns on static random-dot patterns and three types of motion stimuli realised as random-dot kinematograms, namely large-field and object ‘Fourier’ motion (all or a group of dots move coherently), ‘drift-balanced’ motion (a travelling region of static dots), and paradoxical ‘theta’ motion (the dots on the surface of an object move in opposite direction to the object itself). For all classes of stimuli, the JNDs when expressed as differences in signal-to-noise ratio turned out to increase with the signal-to-noise ratio, whereas the JNDs given as percentage of superimposed noise appear to be similar for all tested noise levels. Thus motion perception is in accordance with Weber's Law when the signal-to-noise ratio is regarded as stimulus intensity, which in turn appears to be coded in a nonlinear fashion. In general the Weber fractions are very large, indicating a poor differential sensitivity in signal-to-noise measurements.


1990 ◽  
Vol 63 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Jiri Mates ◽  
P. Lánsky ◽  
N. Yakimoff
Keyword(s):  

2008 ◽  
Vol 99 (1) ◽  
pp. 200-207 ◽  
Author(s):  
Olivia Andrea Masseck ◽  
Klaus-Peter Hoffmann

Single-unit recordings were performed from a retinorecipient pretectal area (corpus geniculatum laterale) in Scyliorhinus canicula. The function and homology of this nucleus has not been clarified so far. During visual stimulation with a random dot pattern, 45 (35%) neurons were found to be direction selective, 10 (8%) were axis selective (best neuronal responses to rotations in both directions around one particular stimulus axis), and 75 (58%) were movement sensitive. Direction-selective responses were found to the following stimulus directions (in retinal coordinates): temporonasal and nasotemporal horizontal movements, up- and downward vertical movements, and oblique movements. All directions of motion were represented equally by our sample of pretectal neurons. Additionally we tested the responses of 58 of the 130 neurons to random dot patterns rotating around the semicircular canal or body axes to investigate whether direction-selective visual information is mapped into vestibular coordinates in pretectal neurons of this chondrichthyan species. Again all rotational directions were represented equally, which argues against a direct transformation from a retinal to a vestibular reference frame. If a complete transformation had occurred, responses to rotational axes corresponding to the axes of the semicircular canals should have been overrepresented. In conclusion, the recorded direction-selective neurons in the Cgl are plausible detectors for retinal slip created by body rotations in all directions.


2021 ◽  
Vol 118 (49) ◽  
pp. e2115772118
Author(s):  
Aneesha K. Suresh ◽  
Charles M. Greenspon ◽  
Qinpu He ◽  
Joshua M. Rosenow ◽  
Lee E. Miller ◽  
...  

Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures—the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.


2008 ◽  
Vol 20 (6) ◽  
pp. 1094-1106 ◽  
Author(s):  
Maria Concetta Morrone ◽  
Andrea Guzzetta ◽  
Francesca Tinelli ◽  
Michela Tosetti ◽  
Michela Del Viva ◽  
...  

We report here two cases of two young diplegic patients with cystic periventricular leukomalacia who systematically, and with high sensitivity, perceive translational motion of a random-dot display in the opposite direction. The apparent inversion was specific for translation motion: Rotation and expansion motion were perceived correctly, with normal sensitivity. It was also specific for random-dot patterns, not occurring with gratings. For the one patient that we were able to test extensively, contrast sensitivity for static stimuli was normal, but was very low for direction discrimination at high spatial frequencies and all temporal frequencies. His optokinetic nystagmus movements were normal but he was unable to track a single translating target, indicating a perceptual origin of the tracking deficit. The severe deficit for motion perception was also evident in the seminatural situation of a driving simulation video game. The perceptual deficit for translational motion was reinforced by functional magnetic resonance imaging studies. Translational motion elicited no response in the MT complex, although it did produce a strong response in many visual areas when contrasted with blank stimuli. However, radial and rotational motion produced a normal pattern of activation in a subregion of the MT complex. These data reinforce the existent evidence for independent cortical processing for translational, and circular or radial flow motion, and further suggest that the two systems have different vulnerability and plasticity to prenatal damage. They also highlight the complexity of visual motion perception, and how the delicate balance of neural activity can lead to paradoxical effects such as consistent misperception of the direction of motion. We advance a possible explanation of a reduced spatial sampling of the motion stimuli and report a simple model that simulates well the experimental results.


Perception ◽  
1979 ◽  
Vol 8 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Brian Rogers ◽  
Maureen Graham

The perspective transformations of the retinal image, produced by either the movement of an observer or the movement of objects in the visual world, were found to produce a reliable, consistent, and unambiguous impression of relative depth in the absence of all other cues to depth and distance. The stimulus displays consisted of computer-generated random-dot patterns that could be transformed by each movement of the observer or the display oscilloscope to simulate the relative movement information produced by a three-dimensional surface. Using a stereoscopic matching task, the second experiment showed that the perceived depth from parallax transformations is in close agreement with the degree of relative image displacement, as well as producing a compelling impression of three-dimensionality not unlike that found with random-dot stereograms.


Sign in / Sign up

Export Citation Format

Share Document