Method of fictitious sources as applied to the electromagnetic diffraction of a plane wave by a grating in conical diffraction mounts

1996 ◽  
Vol 13 (4) ◽  
pp. 796 ◽  
Author(s):  
F. Zolla ◽  
R. Petit
2013 ◽  
Vol 11 ◽  
pp. 31-36 ◽  
Author(s):  
H. Brüns ◽  
L. Klinkenbusch

Abstract. A complex-source beam (CSB) is used to investigate the electromagnetic scattering and diffraction by the tip of a perfectly conducting semi-infinite circular cone. The boundary value problem is defined by assigning a complex-valued source coordinate in the spherical-multipole expansion of the field due to a Hertzian dipole in the presence of the PEC circular cone. Since the incident CSB field can be interpreted as a localized plane wave illuminating the tip, the classical exact tip scattering problem can be analysed by an eigenfunction expansion without having the convergence problems in case of a full plane wave incident field. The numerical evaluation includes corresponding near- and far-fields.


1960 ◽  
Vol 38 (10) ◽  
pp. 1229-1244 ◽  
Author(s):  
R. A. Hurd

The exact value of the electromagnetic field scattered by a unidirectionally conducting surface under plane wave excitation is obtained. The surface, which is an entire plane, is the junction of two unidirectionally conducting half-planes whose conductivity directions are inclined at an arbitrary angle to each other, and to the boundary line.


Author(s):  
J. M. Pankratz

It is often desirable in transmission electron microscopy to know the vertical spacing of points of interest within a specimen. However, in order to measure a stereo effect, one must have two pictures of the same area taken from different angles, and one must have also a formula for converting measured differences between corresponding points (parallax) into a height differential.Assume (a) that the impinging beam of electrons can be considered as a plane wave and (b) that the magnification is the same at the top and bottom of the specimen. The first assumption is good when the illuminating system is overfocused. The second assumption (the so-called “perspective error”) is good when the focal length is large (3 x 107Å) in relation to foil thickness (∼103 Å).


1997 ◽  
Vol 92 (3) ◽  
pp. 477-487 ◽  
Author(s):  
GERALD LIPPERT ◽  
JuRG HUTTER ◽  
MICHELE PARRINELLO

2002 ◽  
Vol 727 ◽  
Author(s):  
A. M. Mazzone

AbstractFull Potential Linearized Augmented Plane Wave calculations have been performed for epitaxial multilayers formed by the noble metals Ag and Cu with a thickness n up to 10 layers. The multilayers have a fcc lattice and are pure or compositionally modulated with a structure of the type Agn Cun or (AgCu)n. For n in the range 2,3 the density of states, evaluated at paramagnetic level, exhibits a sharp reduction of the bandwidth which is consistent with the reduced coordination of these structures. For n ≤ 5 the density of states in the central layers converges to the bulk value while the outer layers retain the narrow bandwidth found at n=2. Due to the absence of charge intermixing and hybridization, these features are shared by multilayers of all composition.


Sign in / Sign up

Export Citation Format

Share Document