Three-dimensional finite-difference time-domain study of enhanced second-harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip

2005 ◽  
Vol 22 (5) ◽  
pp. 1045 ◽  
Author(s):  
Thierry Laroche ◽  
Fadi Issam Baida ◽  
Daniel Van Labeke
2014 ◽  
Vol 602-605 ◽  
pp. 3359-3362
Author(s):  
Chun Li Zhu ◽  
Jing Li

In this paper, output near fields of nanowires with different optical and structure configurations are calculated by using the three-dimensional finite-difference time-domain (3D FDTD) method. Then a nanowire with suitable near field distribution is chosen as the probe for scanning dielectric and metal nanogratings. Scanning results show that the resolution in near-field imaging of dielectric nanogratings can be as low as 80nm, and the imaging results are greatly influenced by the polarization direction of the incident light. Compared with dielectric nanogratings, metal nanogratings have significantly enhanced resolutions when the arrangement of gratings is perpendicular to the polarization direction of the incident light due to the enhancement effect of the localized surface plasmons (SPs). Results presented here could offer valuable references for practical applications in near-field imaging with nanowires as optical probes.


Sign in / Sign up

Export Citation Format

Share Document