scholarly journals Large and dynamical tuning of a chalcogenide Fabry-Perot cavity mode by temperature modulation

2010 ◽  
Vol 18 (3) ◽  
pp. 3168 ◽  
Author(s):  
Mecit Yaman ◽  
H. Esat Kondakci ◽  
Mehmet Bayindir
2021 ◽  
Author(s):  
Akhila Kadyan ◽  
Anil Shaji ◽  
Jino George

In this letter, we investigated the modification of oscillator strength of an asymmetric stretching band of CS<sub>2</sub> by strong coupling to an infrared cavity photon. This is achieved by placing liquid CS<sub>2</sub> in a Fabry-Perot resonator and tune the cavity mode position to match with the molecular vibrational transition. Ultra-strong coupling improves the self-interaction of transition dipoles of asymmetric stretching band of CS<sub>2</sub> that resulted in an increase of its own oscillator strength. We experimentally proved this by taking the area ratio of asymmetric stretching and combination band by selectively coupling the former one. A non-linear increase in the oscillator strength of the asymmetric stretching band is observed upon varying the coupling strength. This is explained by a quantum mechanical model that predicts quadratic behavior under ultra-strong coupling condition. These findings will set up a new paradigm for understanding chemical reaction modification by vacuum field coupling.


Author(s):  
Hidefumi Hiura ◽  
Atef Shalabney ◽  
Jino George

<p>In conventional catalysis the reactants interact with specific sites of the catalyst in such a way that the reaction barrier is lowered and the reaction rate is accelerated. Here we take a radically different approach to catalysis by strongly coupling the vibrations of the reactants to the vacuum electromagnetic field of a cavity. To demonstrate the possibility of such cavity catalysis, we have studied hydrolysis reactions under strong coupling of the OH stretching mode of water to a Fabry-Pérot (FP) microfluidic cavity mode. This results in an exceptionally large Rabi splitting energy ℏΩ<sub>R</sub> of 92 meV (740 cm<sup>−1</sup>), indicating the system is in vibrational ultra-strong coupling (V-USC) regime and we have found that it enhances the hydrolysis reaction rate of cyanate ions by 10<sup>2</sup> times and that of ammonia borane by 10<sup>4</sup> times. This catalytic ability is shown to depend only upon the cavity tuning and the coupling ratio. Given the vital importance of water for life and human activities, we expect our finding not only offers an unconventional way of controlling chemical reactions by ultra-strong light-matter interactions, but also changes the landscape of chemistry in a fundamental way.</p>


2020 ◽  
Vol 238 ◽  
pp. 12003
Author(s):  
Fernanda C. Rodrigues-Machado ◽  
Pauline Pestre ◽  
Liam Scanlon ◽  
Shirin A. Enger ◽  
Jack C. Sankey ◽  
...  

We present a simple, high-duty-cycle, cavity-enhanced optical absorption measurement technique based on delay-limited Pound-Drever-Hall (PDH) sideband locking. The chosen circuit naturally provides realtime readout of the amplitude quadrature of the PDH error signal, which can be mapped onto the cavity’s internal loss rate while using the phase quadrature to lock sideband frequency to the cavity mode. Our proofof-concept device comprises a 5-cm-long Fabry-Perot cavity with a 450 kHz bandwidth (finesse 6800, 350 ns power ringdown), and a feedback bandwidth of several MHz, limited primarily by the group delay of our electronics. This technique could readily be applied to other optical resonators such as fiber cavities, with potential applications in radiation dosimetry.


Author(s):  
Hidefumi Hiura ◽  
Atef Shalabney ◽  
Jino George

<p>In conventional catalysis the reactants interact with specific sites of the catalyst in such a way that the reaction barrier is lowered and the reaction rate is accelerated. Here we take a radically different approach to catalysis by strongly coupling the vibrations of the reactants to the vacuum electromagnetic field of a cavity. To demonstrate the possibility of such cavity catalysis, we have studied hydrolysis reactions under strong coupling of the OH stretching mode of water to a Fabry-Pérot (FP) microfluidic cavity mode. This results in an exceptionally large Rabi splitting energy ℏΩ<sub>R</sub> of 92 meV (740 cm<sup>−1</sup>), indicating the system is in vibrational ultra-strong coupling (V-USC) regime and we have found that it enhances the hydrolysis reaction rate of cyanate ions by 10<sup>2</sup> times and that of ammonia borane by 10<sup>4</sup> times. This catalytic ability is shown to depend only upon the cavity tuning and the coupling ratio. Given the vital importance of water for life and human activities, we expect our finding not only offers an unconventional way of controlling chemical reactions by ultra-strong light-matter interactions, but also changes the landscape of chemistry in a fundamental way.</p>


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 14-23
Author(s):  
Ming-Cui Li ◽  
Ai-Xi Chen

AbstractWe investigate theoretically the entanglement in a hybrid Fabry-Perot cavity system. A membrane in the cavity acts as a mechanical resonator, and a two-level quantum dot is coupled to both the cavity mode and the mechanical resonator. The entanglements between the cavity field and the mechanical resonator, between the mechanical resonator and the quantum dot, as well as between the cavity field and the quantum dot are observed. The logarithmic negativities in the first two subsystems are much larger than those in the system without two-way coupled quantum dot, and the entanglements are robust against the thermal temperature (entanglements still exist in tens of Kelvin). We also find that without direct coupling between the cavity field and the mechanical resonator, one can till observe effective entanglement between them in our system. Our work is helpful and may have potential applications in the research of multipartite entanglement in physical system.


Author(s):  
Hidefumi Hiura ◽  
Atef Shalabney ◽  
Jino George

<p>In conventional catalysis, the reactants interact with specific sites of the catalyst in such a way that the reaction barrier is lowered by changing the reaction path, causing the reaction rate to be accelerated. Here we take a radically different<br>approach to catalysis by ultra-strongly coupling the vibrations of the reactants to the infrared vacuum electromagnetic field. To demonstrate the possibility of such<br>vacuum-field catalysis (or cavity catalysis), we have studied hydrolysis reactions under the vibrational ultra strong coupling (V-USC) of the OH stretching mode of water to a Fabry-Pérot microfluidic cavity mode. This results in a giant Rabi splitting energy (92 meV), indicating the system is in the V-USC regime. We have found that V-USC water enhances the hydrolysis reaction rate of cyanate ions by<br>10<sup>2</sup>-fold and that of ammonia borane by 10<sup>4</sup>-fold. This catalytic ability is found to depend upon the coupling ratio of the vibrational light-matter interaction. Given the vital importance of water for life and human activities, we expect that our finding not only offers an unconventional way of controlling chemical reactions by vacuum-field catalysis but also brings a fresh perspective to science and technology.</p>


2021 ◽  
Author(s):  
Hidefumi Hiura ◽  
Atef Shalabney

<p>In conventional catalysis, the reactants interact with specific sites of the catalyst in such a way that the reaction barrier is lowered by changing the reaction path, causing the reaction rate to be accelerated. Here we take a radically different<br>approach to catalysis by ultra-strongly coupling the vibrations of the reactants to the infrared vacuum electromagnetic field. To demonstrate the possibility of such<br>vacuum-field catalysis (or cavity catalysis), we have studied hydrolysis reactions under the vibrational ultra strong coupling (V-USC) of the OH stretching mode of water to a Fabry-Pérot microfluidic cavity mode. This results in a giant Rabi splitting energy (92 meV), indicating the system is in the V-USC regime. We have found that V-USC water enhances the hydrolysis reaction rate of cyanate ions by<br>10<sup>2</sup>-fold and that of ammonia borane by 10<sup>4</sup>-fold. This catalytic ability is found to depend upon the coupling ratio of the vibrational light-matter interaction. Given the vital importance of water for life and human activities, we expect that our finding not only offers an unconventional way of controlling chemical reactions by vacuum-field catalysis but also brings a fresh perspective to science and technology.</p>


2021 ◽  
Author(s):  
Akhila Kadyan ◽  
Anil Shaji ◽  
Jino George

In this letter, we investigated the modification of oscillator strength of an asymmetric stretching band of CS<sub>2</sub> by strong coupling to an infrared cavity photon. This is achieved by placing liquid CS<sub>2</sub> in a Fabry-Perot resonator and tune the cavity mode position to match with the molecular vibrational transition. Ultra-strong coupling improves the self-interaction of transition dipoles of asymmetric stretching band of CS<sub>2</sub> that resulted in an increase of its own oscillator strength. We experimentally proved this by taking the area ratio of asymmetric stretching and combination band by selectively coupling the former one. A non-linear increase in the oscillator strength of the asymmetric stretching band is observed upon varying the coupling strength. This is explained by a quantum mechanical model that predicts quadratic behavior under ultra-strong coupling condition. These findings will set up a new paradigm for understanding chemical reaction modification by vacuum field coupling.


Author(s):  
Hidefumi Hiura ◽  
Atef Shalabney ◽  
Jino George

<p>In conventional catalysis, the reactants interact with specific sites of the catalyst in such a way that the reaction barrier is lowered by changing the reaction path, causing the reaction rate to be accelerated. Here we take a radically different<br>approach to catalysis by ultra-strongly coupling the vibrations of the reactants to the infrared vacuum electromagnetic field. To demonstrate the possibility of such<br>vacuum-field catalysis (or cavity catalysis), we have studied hydrolysis reactions under the vibrational ultra strong coupling (V-USC) of the OH stretching mode of water to a Fabry-Pérot microfluidic cavity mode. This results in a giant Rabi splitting energy (92 meV), indicating the system is in the V-USC regime. We have found that V-USC water enhances the hydrolysis reaction rate of cyanate ions by<br>10<sup>2</sup>-fold and that of ammonia borane by 10<sup>4</sup>-fold. This catalytic ability is found to depend upon the coupling ratio of the vibrational light-matter interaction. Given the vital importance of water for life and human activities, we expect that our finding not only offers an unconventional way of controlling chemical reactions by vacuum-field catalysis but also brings a fresh perspective to science and technology.</p>


Sign in / Sign up

Export Citation Format

Share Document