scholarly journals Known-plaintext attack to optical encryption systems with space and polarization encoding

2020 ◽  
Vol 28 (6) ◽  
pp. 8085 ◽  
Author(s):  
Shuming Jiao ◽  
Yang Gao ◽  
Ting Lei ◽  
Xiaocong Yuan
2006 ◽  
Vol 31 (8) ◽  
pp. 1044 ◽  
Author(s):  
Xiang Peng ◽  
Peng Zhang ◽  
Hengzheng Wei ◽  
Bin Yu

PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Deming Peng ◽  
Zhaofeng Huang ◽  
Yonglei Liu ◽  
Yahong Chen ◽  
Fei Wang ◽  
...  

AbstractInformation encryption with optical technologies has become increasingly important due to remarkable multidimensional capabilities of light fields. However, the optical encryption protocols proposed to date have been primarily based on the first-order field characteristics, which are strongly affected by interference effects and make the systems become quite unstable during light–matter interaction. Here, we introduce an alternative optical encryption protocol whereby the information is encoded into the second-order spatial coherence distribution of a structured random light beam via a generalized van Cittert–Zernike theorem. We show that the proposed approach has two key advantages over its conventional counterparts. First, the complexity of measuring the spatial coherence distribution of light enhances the encryption protocol security. Second, the relative insensitivity of the second-order statistical characteristics of light to environmental noise makes the protocol robust against the environmental fluctuations, e.g, the atmospheric turbulence. We carry out experiments to demonstrate the feasibility of the coherence-based encryption method with the aid of a fractional Fourier transform. Our results open up a promising avenue for further research into optical encryption in complex environments.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1358
Author(s):  
Taihui Wu ◽  
Jianshe Ma ◽  
Chengchen Wang ◽  
Haibei Wang ◽  
Liangcai Cao ◽  
...  

An optical encryption method based on computer generated holograms printing of photopolymer is presented. Fraunhofer diffraction is performed based on the Gerchberg-Saxton algorithm, and a hologram of the Advanced Encryption Standard encrypted Quick Response code is generated to record the ciphertext. The holograms of the key and the three-dimensional image are generated by the angular spectrum diffraction algorithm. The experimental results show that large-size encrypted Quick Response (QR) code and miniature keys can be printed in photopolymers, which has good application prospects in optical encryption. This method has the advantages of high-density storage, high speed, large fault tolerance, and anti-peeping.


Sign in / Sign up

Export Citation Format

Share Document