computer generated holograms
Recently Published Documents


TOTAL DOCUMENTS

768
(FIVE YEARS 91)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
Vol 152 ◽  
pp. 106944
Author(s):  
YingYing Bai ◽  
ZhiYu Zhang ◽  
TianBao Chen ◽  
RuoQiu Wang ◽  
HongDa Wei ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 85
Author(s):  
Michal Makowski ◽  
Mateusz Sadowski

Recent developments in binary photo-magnetic materials showed efficient and ultra-fast rewriting of holograms where the intensity threshold allows for a dense, sub-diffraction limit packing of hologram points. This paper describes the numerical optimization of the process of writing and reconstructing of 2-D images in a binary-phase computer-generated holograms stored in the said threshold-like medium. Global optimization of the free parameters of the writing process is shown, including the intensity threshold level, propagation distance, hologram spot size and the shape of the boundary regions of the written spots. We present the optimal set of parameters for the best possible writing quality. Full Text: PDF ReferencesA. Stupakiewicz, K. Szerenos, D. Afanasiev et al., "Ultrafast nonthermal photo-magnetic recording in a transparent medium", Nature 542, 71 (2017). CrossRef J. Starobrat, A. Frej, J. Bolek, R. Trybus, A. Stupakiewicz, and M. Makowski, "Photo-magnetic recording of randomized holographic diffraction patterns in a transparent medium", Opt. Lett. 45, 5177 (2020). CrossRef V. Ostroverkhov, et al., "Micro-Holographic Storage and Threshold Holographic Recording Materials", Jap. J. App. Phys. 48.3S1, 03A035 (2009). CrossRef K. Matsushima, T. Shimobaba, "Band-Limited Angular Spectrum Method for Numerical Simulation of Free-Space Propagation in Far and Near Fields", Opt. Express 17, 19662 (2009). CrossRef F. Wyrowski, O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography", JOSA A 5.7, 1058 (1988). CrossRef I. Ducin, T. Shimobaba, M. Makowski, K. Kakarenko, A. Kowalczyk, Jaroslaw Suszek, M. Bieda, A. Kolodziejczyk, M. Sypek, "Holographic projection of images with step-less zoom and noise suppression by pixel separation", Opt. Comm. 340, 131 (2015). CrossRef M. Makowski, "Minimized speckle noise in lens-less holographic projection by pixel separation", Opt. Express 21, 29205 (2013). CrossRef


2021 ◽  
Vol 13 (4) ◽  
pp. 64
Author(s):  
Małgorzata Kujawińska

This editorial presents shortly the holographic timeline and the most important holographic pioneers. This is the background to an overview of the contents of this special volume of the Photonics Letters of Poland, devoted mainly to digital holography. The published papers from international research groups present a wide range of approaches and applications including metrology, displays, computer-generated holograms, and biomedicine.


2021 ◽  
Vol 12 (1) ◽  
pp. 293
Author(s):  
Rafał Kukołowicz ◽  
Maksymilian Chlipala ◽  
Juan Martinez-Carranza ◽  
Moncy Sajeev Idicula ◽  
Tomasz Kozacki

Near-eye holographic displays are the holy grail of wear-on 3D display devices because they are intended to project realistic wide-angle virtual scenes with parameters matching human vision. One of the key features of a realistic perspective is the ability to move freely around the virtual scene. This can be achieved by addressing the display with wide-angle computer-generated holograms (CGHs) that enable continuous viewpoint change. However, to the best of our knowledge there is no technique able to generate these types of content. Thus, in this work we propose an accurate and non-paraxial hologram update method for wide-angle CGHs that supports continuous viewpoint change around the scene. This method is based on the assumption that with a small change in perspective, two consecutive holograms share overlapping data. This enables reusing the corresponding part of the information from the previous view, eliminating the need to generate an entirely new hologram. Holographic information for the next viewpoint is calculated in two steps: first, a tool approximating the Angular Spectrum Propagation is proposed to generate the hologram data from previous viewpoint; and second, the efficient Phase Added Stereogram algorithm is utilized for generating the missing hologram content. This methodology offers fast and accurate calculations at the same time. Numerical and optical experiments are carried out to support the results of the proposed method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kota Kumagai ◽  
Shun Miura ◽  
Yoshio Hayasaki

AbstractA volumetric display generates a graphics that can be viewed from 360$$^{\circ }$$ ∘ by representing the 3D information of an object as voxels in physical space. However, the natural properties of physical objects, such as 3D information and colors, and the seamless relationships between graphics and humans make it difficult to implement such displays. Here, we introduce a novel system that combines the spatial generation of femtosecond-laser-excited emission points using computer-generated holograms and beam scanning with the drawing space separation method. We demonstrate the drawing of volumetric graphics that can be color-expressed in voxel units in the air. This system enables the drawing of volumetric graphics in the air, accurate color representations, and robust graphics that are not destroyed by contact with users or objects. It also lays the foundation for the implementation of future volumetric displays.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 477
Author(s):  
Dimitris Ampeliotis ◽  
Aggeliki Anastasiou ◽  
Christina (Tanya) Politi ◽  
Dimitris Alexandropoulos

This work studies the problem of designing computer-generated holograms using phase-shifting masks limited to represent only a small number of discrete phase levels. This problem has various applications, notably in the emerging field of optogenetics and lithography. A novel regularized cost function is proposed for the problem at hand that penalizes the unfeasible phase levels. Since the proposed cost function is non-smooth, we derive proper proximal gradient algorithms for its minimization. Simulation results, considering an optogenetics application, demonstrate that the proposed proximal gradient algorithm yields better performance as compared to other algorithms proposed in the literature.


2021 ◽  
Vol 11 (21) ◽  
pp. 9889
Author(s):  
Zehao He ◽  
Xiaomeng Sui ◽  
Liangcai Cao

Holographic display has the potential to be utilized in many 3D application scenarios because it provides all the depth cues that human eyes can perceive. However, the shortage of 3D content has limited the application of holographic 3D displays. To enrich 3D content for holographic display, a 2D to 3D rendering approach is presented. In this method, 2D images are firstly classified into three categories, including distant view images, perspective view images and close-up images. For each category, the computer-generated depth map (CGDM) is calculated using a corresponding gradient model. The resulting CGDMs are applied in a layer-based holographic algorithm to obtain computer-generated holograms (CGHs). The correctly reconstructed region of the image changes with the reconstruction distance, providing a natural 3D display effect. The realistic 3D effect makes the proposed approach can be applied in many applications, such as education, navigation, and health sciences in the future.


Sign in / Sign up

Export Citation Format

Share Document