scholarly journals Simultaneously distributed temperature and dynamic strain sensing based on a hybrid ultra-weak fiber grating array

2020 ◽  
Vol 28 (23) ◽  
pp. 34309
Author(s):  
Chengli Li ◽  
Jianguan Tang ◽  
Cheng Cheng ◽  
Longbao Cai ◽  
Huiyong Guo ◽  
...  
2021 ◽  
Author(s):  
Yuan Wang ◽  
Ping Lu ◽  
Stephen Mihailov ◽  
Xiaoyi Bao

2021 ◽  
Vol 46 (4) ◽  
pp. 789
Author(s):  
Yuan Wang ◽  
Ping Lu ◽  
Stephen Mihailov ◽  
Liang Chen ◽  
Xiaoyi Bao

2020 ◽  
pp. 1-1
Author(s):  
Felipe Oliveira Barino ◽  
Renato Faraco-Filho ◽  
Deivid Campos ◽  
Vinicius N. H. Silva ◽  
Andres P. Lopez-Barbero ◽  
...  

2020 ◽  
Vol 45 (18) ◽  
pp. 5020
Author(s):  
Li Zhang ◽  
Zhisheng Yang ◽  
Nachum Gorbatov ◽  
Roy Davidi ◽  
Malak Galal ◽  
...  

Author(s):  
Andrea Meoni ◽  
Antonella D'Alessandro ◽  
Austin Downey ◽  
Enrique García-Macías ◽  
Marco Rallini ◽  
...  

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNTs content. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both static and dynamically varying compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.


2021 ◽  
Vol 17 (12) ◽  
pp. 723-728
Author(s):  
Wei Wang ◽  
Chuanyi Tao ◽  
Hao Wang ◽  
Xuhai Jiang ◽  
Rong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document