scholarly journals Mitigating photorefractive effect in thin-film lithium niobate microring resonators

2021 ◽  
Vol 29 (4) ◽  
pp. 5497
Author(s):  
Yuntao Xu ◽  
Mohan Shen ◽  
Juanjuan Lu ◽  
Joshua B. Surya ◽  
Ayed Al Sayem ◽  
...  
Author(s):  
Zhaohui Ma ◽  
Jia-Yang Chen ◽  
Yong Meng Sua ◽  
Zhan Li ◽  
Chao Tang ◽  
...  

2021 ◽  
Author(s):  
Yuntao Xu ◽  
Ayed Sayem ◽  
Linran Fan ◽  
Chang-Ling Zou ◽  
Sihao Wang ◽  
...  

Abstract Superconducting cavity electro-optics presents a promising route to coherently convert microwave and optical photons and distribute quantum entanglement between superconducting circuits over long-distance. Strong Pockels nonlinearity and high-performance optical cavity are the prerequisites for high conversion efficiency. Thin-film lithium niobate (TFLN) offers these desired characteristics. Despite significant recent progresses, only unidirectional conversion with efficiencies orders of magnitude lower than expected has been realized. In this article, we demonstrate the first bidirectional electro-optic conversion in TFLN-superconductor hybrid system, with conversion efficiency improved by more than three orders of magnitude. Our new air-clad device architecture boosts the sustainable intracavity pump power at cryogenic temperatures by suppressing the prominent photorefractive effect that limits cryogenic performance of TFLN, and reaches an efficiency of 1.02% (internal efficiency of 15.2%). This work firmly establishes the TFLN-superconductor hybrid EO system as a highly competitive transduction platform for future quantum network applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuntao Xu ◽  
Ayed Al Sayem ◽  
Linran Fan ◽  
Chang-Ling Zou ◽  
Sihao Wang ◽  
...  

AbstractSuperconducting cavity electro-optics presents a promising route to coherently convert microwave and optical photons and distribute quantum entanglement between superconducting circuits over long-distance. Strong Pockels nonlinearity and high-performance optical cavity are the prerequisites for high conversion efficiency. Thin-film lithium niobate (TFLN) offers these desired characteristics. Despite significant recent progresses, only unidirectional conversion with efficiencies on the order of 10−5 has been realized. In this article, we demonstrate the bidirectional electro-optic conversion in TFLN-superconductor hybrid system, with conversion efficiency improved by more than three orders of magnitude. Our air-clad device architecture boosts the sustainable intracavity pump power at cryogenic temperatures by suppressing the prominent photorefractive effect that limits cryogenic performance of TFLN, and reaches an efficiency of 1.02% (internal efficiency of 15.2%). This work firmly establishes the TFLN-superconductor hybrid EO system as a highly competitive transduction platform for future quantum network applications.


2019 ◽  
Vol 27 (15) ◽  
pp. 22025 ◽  
Author(s):  
Meisam Bahadori ◽  
Yansong Yang ◽  
Lynford L. Goddard ◽  
Songbin Gong

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 458
Author(s):  
Nikolay V. Sidorov ◽  
Natalia A. Teplyakova ◽  
Olga V. Makarova ◽  
Mikhail N. Palatnikov ◽  
Roman A. Titov ◽  
...  

Defect structure of nominally pure lithium niobate crystals grown from a boron doped charge have been studied by Raman and optical spectroscopy, laser conoscopy, and photoinduced light scattering. An influence of boron dopant on optical uniformity, photoelectrical fields values, and band gap have been also studied by these methods in LiNbO3 crystals. Despite a high concentration of boron in the charge (up to 2 mol%), content in the crystal does not exceed 10−4 wt%. We have calculated that boron incorporates only into tetrahedral voids of crystal structure as a part of groups [BO3]3−, which changes O–O bonds lengths in O6 octahedra. At this oxygen–metal clusters MeO6 (Me: Li, Nb) change their polarizability. The clusters determine optically nonlinear and ferroelectric properties of a crystal. Chemical interactions in the system Li2O–Nb2O5–B2O3 have been considered. Boron, being an active element, structures lithium niobate melt, which significantly influences defect structure and physical properties of a crystal grown from such a melt. At the same time, amount of defects NbLi and concentration of OH groups in LiNbO3:B is close to that in stoichiometric crystals; photorefractive effect, optical, and compositional uniformity on the contrary is higher.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-9
Author(s):  
Xingrui Huang ◽  
Yang Liu ◽  
Zezheng Li ◽  
Huan Guan ◽  
Qingquan Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document