scholarly journals Compression-coding-based surface measurement using digital micromirror device and heterodyne interferometry of optical frequency comb

2021 ◽  
Author(s):  
Guangyao Xu ◽  
yue wang ◽  
Jiayang Chen ◽  
Shilin Xiong ◽  
Guanhao Wu
2018 ◽  
Vol 8 (12) ◽  
pp. 2465 ◽  
Author(s):  
Shilin Xiong ◽  
Yue Wang ◽  
Yawen Cai ◽  
Jiuli Liu ◽  
Jie Liu ◽  
...  

Heterodyne interferometry based on an optical frequency comb (OFC) is a powerful tool for distance measurement. In this paper, a method to calculate the effective center wavelength of wide spectrum heterodyne interference signal was explored though both simulation and experiment. Results showed that the effective center wavelength is a function of the spectra of the two interfered beams and time-delay of the two overlapped pulses. If the product of the spectra from two arms is symmetric, the effective center wavelength does not change with time-delay of the two pulses. The relative difference between the simulation and experiment was less than 0.06%.


2021 ◽  
pp. 1-1
Author(s):  
Prajwal D Lakshmijayasimha ◽  
Syed Tajammul Ahmad ◽  
Eamonn Martin ◽  
Anandarajah M Prince ◽  
Aleksandra Maria Kaszubowska-Anandarajah

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mamoru Endo ◽  
Shota Kimura ◽  
Shuntaro Tani ◽  
Yohei Kobayashi

AbstractMulti-gigahertz mechanical vibrations that stem from interactions between light fields and matter—known as acoustic phonons—have long been a subject of research. In recent years, specially designed functional devices have been developed to enhance the strength of the light-matter interactions because excitation of acoustic phonons using a continuous-wave laser alone is insufficient. However, the strength of the interaction cannot be controlled appropriately or instantly using these structurally-dependent enhancements. Here we show a technique to control the effective interaction strength that does not operate via the material structure in the spatial domain; instead, the method operates through the structure of the light in the time domain. The effective excitation and coherent control of acoustic phonons in a single-mode fiber using an optical frequency comb that is performed by tailoring the optical pulse train. This work represents an important step towards comb-matter interactions.


2017 ◽  
Author(s):  
Takeo Minamikawa ◽  
Takashi Ogura ◽  
Takashi Masuoka ◽  
Eiji Hase ◽  
Yoshiaki Nakajima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document