scholarly journals Optimized Management of Ultra-wideband Photonics Switching Systems Assisted by Machine Learning

2021 ◽  
Author(s):  
Ihtesham Khan ◽  
LORENZO TUNESI ◽  
Muhammad Umar Masood ◽  
Enrico Ghillino ◽  
Paolo Bardella ◽  
...  
2021 ◽  
Author(s):  
Ihtesham Khan ◽  
M Umar Masood ◽  
Lorenzo Tunesi ◽  
Paolo Bardella ◽  
Enrico Ghillino ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 3980 ◽  
Author(s):  
Cung Lian Sang ◽  
Bastian Steinhagen ◽  
Jonas Dominik Homburg ◽  
Michael Adams ◽  
Marc Hesse ◽  
...  

In ultra-wideband (UWB)-based wireless ranging or distance measurement, differentiation between line-of-sight (LOS), non-line-of-sight (NLOS), and multi-path (MP) conditions is important for precise indoor localization. This is because the accuracy of the reported measured distance in UWB ranging systems is directly affected by the measurement conditions (LOS, NLOS, or MP). However, the major contributions in the literature only address the binary classification between LOS and NLOS in UWB ranging systems. The MP condition is usually ignored. In fact, the MP condition also has a significant impact on the ranging errors of the UWB compared to the direct LOS measurement results. However, the magnitudes of the error contained in MP conditions are generally lower than completely blocked NLOS scenarios. This paper addresses machine learning techniques for identification of the three mentioned classes (LOS, NLOS, and MP) in the UWB indoor localization system using an experimental dataset. The dataset was collected in different conditions in different scenarios in indoor environments. Using the collected real measurement data, we compared three machine learning (ML) classifiers, i.e., support vector machine (SVM), random forest (RF) based on an ensemble learning method, and multilayer perceptron (MLP) based on a deep artificial neural network, in terms of their performance. The results showed that applying ML methods in UWB ranging systems was effective in the identification of the above-three mentioned classes. Specifically, the overall accuracy reached up to 91.9% in the best-case scenario and 72.9% in the worst-case scenario. Regarding the F1-score, it was 0.92 in the best-case and 0.69 in the worst-case scenario. For reproducible results and further exploration, we provide the publicly accessible experimental research data discussed in this paper at PUB (Publications at Bielefeld University). The evaluations of the three classifiers are conducted using the open-source Python machine learning library scikit-learn.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5438 ◽  
Author(s):  
Valentín Barral ◽  
Carlos J. Escudero ◽  
José A. García-Naya ◽  
Pedro Suárez-Casal

Indoor positioning systems based on radio frequency inherently present multipath-related phenomena. This causes ranging systems such as ultra-wideband (UWB) to lose accuracy when detecting secondary propagation paths between two devices. If a positioning algorithm uses ranging measurements without considering these phenomena, it will face critical errors in estimating the position. This work analyzes the performance obtained in a localization system when combining location algorithms with machine learning techniques applied to a previous classification and mitigation of the propagation effects. For this purpose, real-world cross-scenarios are considered, where the data extracted from low-cost UWB devices for training the algorithms come from a scenario different from that considered for the test. The experimental results reveal that machine learning (ML) techniques are suitable for detecting non-line-of-sight (NLOS) ranging values in this situation.


Author(s):  
Cung Lian Sang ◽  
Bastian Steinhagen ◽  
Jonas Dominik Homburg ◽  
Michael Adams ◽  
Marc Hesse ◽  
...  

In Ultra-wideband (UWB)-based wireless ranging or distance measurement, differentiation between line-of-sight~(LOS), non-line-of-sight~(NLOS), and multi-path (MP) conditions are important for precise indoor localization. This is because the accuracy of the reported measured distance in UWB ranging systems is directly affected by the measurement conditions (LOS, NLOS or MP). However, the major contributions in literature only address the binary classification between LOS and NLOS in UWB ranging systems. The MP condition is usually ignored. In fact, the MP condition also has a significant impact on the ranging errors of the UWB compared to the direct LOS measurement results. Though, the magnitudes of the error contained in MP conditions are generally lower than completely blocked NLOS scenarios. This paper addresses machine learning techniques for identification of the mentioned three classes (LOS, NLOS, and MP) in the UWB indoor localization system using an experimental data-set. The data-set was collected in different conditions at different scenarios in indoor environments. Using the collected real measurement data, we compare three machine learning (ML) classifiers, i.e., support vector machine (SVM), random forest (RF) based on an ensemble learning method, and multilayer perceptron (MLP) based on a deep artificial neural network, in terms of their performance. The results show that applying ML methods in UWB ranging systems are effective in identification of the above-mentioned three classes. In specific, the overall accuracy reaches up to 91.9% in the best-case scenario and 72.9% in the worst-case scenario. Regarding the F1-score, it is 0.92 in the best-case and 0.69 in the worst-case scenario. For reproducible results and further exploration, we (will) provide the publicly accessible experimental research data discussed in this paper at PUB - Publications at Bielefeld University. The evaluations of the three classifiers are conducted using the open-source python machine learning library scikit-learn.


2021 ◽  
Vol 22 (5) ◽  
pp. 1019-1029
Author(s):  
Che-Cheng Chang Che-Cheng Chang ◽  
Hong-Wen Wang Che-Cheng Chang ◽  
Yu-Xiang Zeng Hong-Wen Wang ◽  
Jin-Da Huang Yu-Xiang Zeng


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Sign in / Sign up

Export Citation Format

Share Document