scholarly journals Secure communication scheme using chaotic laser diodes subject to incoherent optical feedback and incoherent optical injection

2001 ◽  
Vol 26 (19) ◽  
pp. 1486 ◽  
Author(s):  
F. Rogister ◽  
A. Locquet ◽  
D. Pieroux ◽  
M. Sciamanna ◽  
O. Deparis ◽  
...  
Photonics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 25
Author(s):  
Satoshi Ebisawa ◽  
Shinichi Komatsu

We numerically studied the chaotic dynamics of a laser diode (LD) system with optical injection, where a chaotic signal, which is generated by an LD with optical feedback, is applied to the drive current of the master LD. To quantify the orbital instability of the slave LD, the Lyapunov exponent was calculated as a function of the optical injection ratio between the master and slave LDs and the optical feedback ratio of the applied signal. We found that the Lyapunov exponent was increased and the orbital instability was enhanced by applying a chaotic signal when the inherent system without the applied signal was in a “window”. Next, we investigated the orbital instability of the slave LD in terms of statistical and dynamical quantities of the applied chaotic signal. The maximal value of the Lyapunov exponent for a certain range of the injection ratio was calculated and we showed that a chaotic pulsation is suitable for enhancing the orbital instability of the LD system. We then investigated chaos synchronization between the LDs. It is concluded that the orbital instability of an LD with optical injection can be enhanced by applying chaotic pulsation without chaos synchronization.


2021 ◽  
pp. 140-155
Author(s):  
S.V. Kirianov ◽  
A. Mashkantsev ◽  
I. Bilan ◽  
A. Ignatenko

Nonlinear chaotic dynamics of the of the chaotic laser diodes with an additional optical injection  is computed within rate equations model, based on the a set of rate equations for the slave laser electric complex amplitude and carrier density. To calculate the system dynamics in a chaotic regime the known chaos theory and non-linear analysis methods such as a correlation integral algorithm, the Lyapunov’s exponents and  Kolmogorov entropy analysis are used. There are listed the data of computing dynamical and topological invariants such as the correlation, embedding and Kaplan-Yorke dimensions, Lyapunov’s exponents, Kolmogorov entropy etc. New data on topological and dynamical invariants are computed and firstly presented.


2001 ◽  
Author(s):  
Fabien Rogister ◽  
Alexandre Locquet ◽  
Didier Pieroux ◽  
Patrice Megret ◽  
Olivier Deparis ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 02030-1-02030-5
Author(s):  
Sanjay J. Patel ◽  
◽  
Akshay Jariwala ◽  
C. J. Panchal ◽  
Vipul Kheraj ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 516
Author(s):  
Yanqiang Guo ◽  
Tong Liu ◽  
Tong Zhao ◽  
Haojie Zhang ◽  
Xiaomin Guo

By frequency-band extracting, we experimentally and theoretically investigate time-delay signature (TDS) suppression and entropy growth enhancement of a chaotic optical-feedback semiconductor laser under different injection currents and feedback strengths. The TDS and entropy growth are quantified by the peak value of autocorrelation function and the difference of permutation entropy at the feedback delay time. At the optimal extracting bandwidth, the measured TDS is suppressed up to 96% compared to the original chaos, and the entropy growth is higher than the noise-dominated threshold, indicating that the dynamical process is noisy. The effects of extracting bandwidth and radio frequencies on the TDS and entropy growth are also clarified experimentally and theoretically. The experimental results are in good agreements with the theoretical results. The skewness of the laser intensity distribution is effectively improved to 0.001 with the optimal extracting bandwidth. This technique provides a promising tool to extract randomness and prepare desired entropy sources for chaotic secure communication and random number generation.


1991 ◽  
Vol 9 (4) ◽  
pp. 468-476 ◽  
Author(s):  
J. Helms ◽  
K. Petermann

2021 ◽  
Author(s):  
Dong-Zhou Zhong ◽  
Zhe Xu ◽  
Ya-Lan Hu ◽  
Ke-Ke Zhao ◽  
Jin-Bo Zhang ◽  
...  

Abstract In this work, we utilize three parallel reservoir computers using semiconductor lasers with optical feedback and light injection to model radar probe signals with delays. Three radar probe signals are generated by driving lasers constructed by a three-element lase array with self-feedback. The response lasers are implemented also by a three-element lase array with both delay-time feedback and optical injection, which are utilized as nonlinear nodes to realize the reservoirs. We show that each delayed radar probe signal can well be predicted and to synchronize with its corresponding trained reservoir, even when there exist parameter mismatches between the response laser array and the driving laser array. Based on this, the three synchronous probe signals are utilized for ranging to three targets, respectively, using Hilbert transform. It is demonstrated that the relative errors for ranging can be very small and less than 0.6%. Our findings show that optical reservoir computing provides an effective way for applications of target ranging.


Sign in / Sign up

Export Citation Format

Share Document