Detection of subwavelength slit-width variation with irradiance measurements in the far field

2002 ◽  
Vol 27 (22) ◽  
pp. 1971 ◽  
Author(s):  
S. Selci ◽  
M. Righini
2017 ◽  
Vol 56 (11) ◽  
pp. 1 ◽  
Author(s):  
Tingzhao Fu ◽  
Shaohui Cui ◽  
Huan Wang ◽  
Yang Xia ◽  
Chaobo Li
Keyword(s):  

Author(s):  
R. F. Millar

ABSTRACTIn recent years much attention has been directed towards the asymptotic solution of diffraction problems. In the present work, consideration is given to the relatively simple problem of the diffraction of an E-polarized plane wave by an infinite slit. The solution takes the form of a series in inverse powers of the ratio of slit-width to wavelength of the incident wave, and is based on the solution by successive substitutions of a pair of integral equations. The current densities induced on both halves of the screen are calculated, from which is deduced the electric field in the slit. The far-field is determined from the aperture distribution, and an asymptotic expression is found for the transmission coefficient as a function of the angle of incidence and the ratio of slit-width to wavelength.While most previous work has been confined to near-normal incidence, the present theory is uniformly valid for all angles of incidence.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 730
Author(s):  
Xing Li ◽  
Jing Tang ◽  
Xuelian Zhang ◽  
Ruirui Zhang ◽  
Xiangyu Zeng ◽  
...  

We demonstrate that the interference pattern of the plasmonic and photonic modes can be controlled by changing the slit width of a square slit structure. Based on the analyses of the plasmonic and photonic modes of slits with different widths, we theoretically derived the expressions of wavefield generated by a square slit. A far-field scattered imaging system is utilized to collect the intensity distribution experimentally. Various interference patterns, including stripes, square-like lattice array, and diamond-like lattice array, have been observed by adjusting the slit widths. In addition, the results were validated by performing finite-difference time-domain simulations, which are consistent with the theoretical and experimental results.


Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


Author(s):  
J. Bentley ◽  
E. A. Kenik ◽  
K. Siangchaew ◽  
M. Libera

Quantitative elemental mapping by inner shell core-loss energy-filtered transmission electron microscopy (TEM) with a Gatan Imaging Filter (GIF) interfaced to a Philips CM30 TEM operated with a LaB6 filament at 300 kV has been applied to interfaces in a range of materials. Typically, 15s exposures, slit width Δ = 30 eV, TEM magnifications ∼2000 to 5000×, and probe currents ≥200 nA, were used. Net core-loss maps were produced by AE−r background extrapolation from two pre-edge windows. Zero-loss I0 (Δ ≈ 5 eV) and “total” intensity IT (unfiltered, no slit) images were used to produce maps of t/λ = ln(IT/I0), where λ is the total inelastic mean free path. Core-loss images were corrected for diffraction contrast by normalization with low-loss images recorded with the same slit width, and for changes in thickness by normalization with t/λ, maps. Such corrected images have intensities proportional to the concentration in atoms per unit volume. Jump-ratio images (post-edge divided by pre-edge) were also produced. Spectrum lines across planar interfaces were recorded with TEM illumination by operating the GIF in the spectroscopy mode with an area-selecting slit oriented normal to the energy-dispersion direction. Planar interfaces were oriented normal to the area-selecting slit with a specimen rotation holder.


Sign in / Sign up

Export Citation Format

Share Document