interference pattern
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 85)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Richard Osgood ◽  
Yassine Ait-El-Aoud ◽  
Katherine Bullion ◽  
Sean Dinneen ◽  
Richard Kingsborough ◽  
...  

Abstract Understanding scattering of visible and infrared photons from nanomaterials and nanostructured materials is increasingly important for imaging, thermal management, and detection, and has implications for other parts of the electromagnetic spectrum (e.g., x-ray scattering and radar). New, interesting reports of photon scattering as a diagnostic probe, from inelastic x-ray scattering and interference to “nano-FTIR” microscopy using infrared photons, have been published and are under active investigation in laboratories around the world. Here, we report, for the first time to our best knowledge, the experimental discovery of a Fabry-Perot interference pattern that is scattered by the sub-monolayer array of plasmonic Ag nanoparticles, and confirm it analytically and with rigorous numerical FDTD simulations.


2021 ◽  
Author(s):  
Xiaoyang Li ◽  
Xu Yang ◽  
Bincheng Li ◽  
Shengqian Wang ◽  
Hao Xian

2021 ◽  
Author(s):  
Ben Whetten ◽  
Jarom Jackson ◽  
Richard Sandberg ◽  
Dallin Durfee

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Rist ◽  
Kim Klyssek ◽  
Nikolay M. Novikovskiy ◽  
Max Kircher ◽  
Isabel Vela-Pérez ◽  
...  

AbstractHow long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion’s potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons’ emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1469
Author(s):  
Z. Khani ◽  
S. V. Mousavi ◽  
S. Miret-Artés

In this work, momentum-space decoherence using minimum and nonminimum-uncertainty-product (stretched) Gaussian wave packets in the framework of Caldeira–Leggett formalism and under the presence of a linear potential is studied. As a dimensionless measure of decoherence, purity, a quantity appearing in the definition of the linear entropy, is studied taking into account the role of the stretching parameter. Special emphasis is on the open dynamics of the well-known cat states and bosons and fermions compared to distinguishable particles. For the cat state, while the stretching parameter speeds up the decoherence, the external linear potential strength does not affect the decoherence time; only the interference pattern is shifted. Furthermore, the interference pattern is not observed for minimum-uncertainty-product-Gaussian wave packets in the momentum space. Concerning bosons and fermions, the question we have addressed is how the symmetry of the wave functions of indistinguishable particles is manifested in the decoherence process, which is understood here as the loss of being indistinguishable due to the gradual emergence of classical statistics with time. We have observed that the initial bunching and anti-bunching character of bosons and fermions, respectively, in the momentum space are not preserved as a function of the environmental parameters, temperature, and damping constant. However, fermionic distributions are slightly broader than the distinguishable ones and these similar to the bosonic distributions. This general behavior could be interpreted as a residual reminder of the symmetry of the wave functions in the momentum space for this open dynamics.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012067
Author(s):  
M V Askerko ◽  
A E Gavlina ◽  
V I Batshev ◽  
D A Novikov

Abstract A non-contact optical method for testing of large concave and convex mirrors both spherical and aspheric is presented. It is based on the orthogonal ray interferometer modification. The point source is placed near the testing mirror and the chief ray propagates normally to its axis. The information about a tangential profile of testing mirror is contained in an interference pattern that is a result of superposition between two wavefronts, the first is reflected from the mirror, the second bypasses the mirror. Testing of the entire surface is carried out by rotating the mirror. Interferogram decoding method and algorithm for determination of an error of the testing surface are presented. The proposed method does not require bulky additional optical components what differs it from existing methods and makes promising primary for testing large astronomical mirrors. Furthermore, the method is universal and suited for surfaces with various geometrical parameters. The scheme with some modification of the present method is applied for surfaces without axis of rotational symmetry or freeform surfaces.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012060
Author(s):  
A V Kuchmenko ◽  
S S Usmanova ◽  
N M Skornyakova ◽  
V V Kuchmenko

Abstract The work aim is to investigate the influence of the parameters of the laser interference method experimental setup on the obtained images. Using computer modeling based on the diffraction theory and physical experiment, the change in the parameters of the interference pattern for different viewing angles had been shown. The results can be used to develop a single algorithm for processing images of the laser interference method.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
B.A. Barabolya ◽  
◽  
D.D. Gabrieljan ◽  
S.V. Karavaev ◽  
A.V. Petukhov ◽  
...  

This work presents the result of the received signal measuring system for processing Doppler frequency theoretical research. In the researching device means of controlling laser frequency whose amplitude is proportional to the Doppler frequency shift of the received RF signal is realized. The coherent laser beam is divided in two forming interference pattern. In this case, one of the beams passes through the delay line, which leads to a phase shift in the optical wave. The rate of this phase shift is proportional to the laser frequency, changes in which cause corresponding changes in the interference pattern. Changes in the interference pattern in center analysis makes it possible to determine the changes of the laser frequency, which depends on Doppler frequency shift of the received RF signal. In this work opposition of the requirements for the Doppler frequency shift determination interferometric system parameters (the coefficient of proportionality to conversion Doppler frequency shift of the received RF signal in laser frequency and time delay) is discovered: large dynamic measurement range and high Doppler frequency shift measurement resolution. The processing the received RF signal method is proposed. This method take into consideration these requirements. The proposed measurement algorithm implements the multiscale principle. It is pointed that the proposed processing the measurements results method can be implemented both the parallel processing in channels with different values of conversion coefficients, and sequential – with their iterative change.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012066
Author(s):  
A E Gavlina ◽  
D A Novikov ◽  
M V Askerko

Abstract This report is devoted to the processing of the interference pattern of the tested mirror, obtained using the orthogonal ray scheme, where the convex testing surface is illuminated by a collimated beam, which is perpendicular to the optical axis of the surface. The interference pattern is created by two wavefronts, one of which is reflected from the mirror, while the other wavefront bypasses the mirror and travels directly to the detector plane. The result of interference pattern processing is a topography map formed by several tangential profiles. The proposed method is suited for large diameter convex spherical and aspherical mirrors and does not require a priori information of surface under the test, such as the vertex radius of curvature and the conical constant. Theoretical foundation of the data processing method are presented.


Sign in / Sign up

Export Citation Format

Share Document