scholarly journals Dielectric waveguides with embedded graphene nanoribbons for all-optical broadband modulation

2019 ◽  
Vol 9 (11) ◽  
pp. 4456
Author(s):  
F. Karimi ◽  
I. Knezevic
2018 ◽  
Vol 7 (4) ◽  
pp. 2818
Author(s):  
Hassan Falah Fakhruldeen ◽  
Tahreer Safaa Mansour

In this work, all-optical plasmonic NOT logic gate was proposed by using metal-insulator-metal (MIM) plasmonic waveguides design. This logic gate is numerically analyzed by COMSOL Multiphysics 5.3a. Recently, plasmonics have attracted more attention due to its huge applications in all optical signal processing. Due to it’s highly localization to metallic surfaces, surface plasmon (SP) may have many applications in sub wavelength to guide the optical signal in waveguides to overcome the diffraction limit which considered a big problem in conventional optics. The proposed design of MIM structure is consist of a dielectric waveguides plus metallic claddings, which guide the incident light strongly in the insulator region. Strong localization and relatively simple fabrication make the MIM waveguides the potential key design of Nano-scale all optical devices. Our design consists of symmetric ring structures with straight waveguides which based on MIM structure. All-optical logic gate (NOT gate) behavior is achieved from utilizing the interface between straight waveguides and ring structure waveguides. By switching the activation of the control port, the propagation of the outgoing field in the output waveguide will be changed. As the simulation results show, the proposed structure could operate as an all-optical NOT logic gate. This gate would be a potential component in many applications of all-optical signals processing.  


2020 ◽  
Vol 9 (1) ◽  
pp. 91-94
Author(s):  
H. F. Fakhruldeen ◽  
T. S. Mansour

   In this work, all-optical plasmonic NOT logic gate was proposed using Insulator-Metal-Insulator (IMI) plasmonic waveguides Technology. The proposed all-optical NOT gate is simulated and realized using COMSOL Multiphysics 5.3a software. Recently, plasmonic technology has attracted high attention due to its wide applications in all-optical signal processing. Due to its highly localization to metallic surfaces, surface plasmon (SP) may have huge applications in sub wavelength to guide the optical signal in the waveguides which results in overcoming the diffraction limit problem in conventional optics. The proposed IMI structure is consist of a dielectric waveguides plus metallic claddings, which guide the incident light strongly in the insulator region. Our design consists of symmetric nano-rings structures with two straight waveguides which based on IMI structure. The operation of all-optical NOT gate is realized by employing the constructive and destructive interface between the straight waveguides and the nano-rings structure waveguides. There are three ports in the proposed design, input, control and output ports. The activation of control port is always ON. By changing the structure dimensions, the materials, the phase of the applied optical signal to the input and control ports, the optical transmission at the output port is changed. In our proposed structure, the insulator dielectric material is glass and the metal material is silver. The calculated contrast ratio between (ON and OFF) output states is 3.16 (dB).


2014 ◽  
Vol 16 (2) ◽  
pp. 025003 ◽  
Author(s):  
Yinxiao Xiang ◽  
Wei Cai ◽  
Lei Wang ◽  
Cuifeng Ying ◽  
Xinzheng Zhang ◽  
...  

Author(s):  
R. Hegerl ◽  
A. Feltynowski ◽  
B. Grill

Till now correlation functions have been used in electron microscopy for two purposes: a) to find the common origin of two micrographs representing the same object, b) to check the optical parameters e. g. the focus. There is a third possibility of application, if all optical parameters are constant during a series of exposures. In this case all differences between the micrographs can only be caused by different noise distributions and by modifications of the object induced by radiation.Because of the electron noise, a discrete bright field image can be considered as a stochastic series Pm,where i denotes the number of the image and m (m = 1,.., M) the image element. Assuming a stable object, the expectation value of Pm would be Ηm for all images. The electron noise can be introduced by addition of stationary, mutual independent random variables nm with zero expectation and the variance. It is possible to treat the modifications of the object as a noise, too.


1988 ◽  
Vol 49 (C2) ◽  
pp. C2-459-C2-462 ◽  
Author(s):  
F. A.P. TOOLEY ◽  
B. S. WHERRETT ◽  
N. C. CRAFT ◽  
M. R. TAGHIZADEH ◽  
J. F. SNOWDON ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document