diffraction gratings
Recently Published Documents


TOTAL DOCUMENTS

1608
(FIVE YEARS 127)

H-INDEX

56
(FIVE YEARS 5)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 172
Author(s):  
Oleg Kameshkov ◽  
Vasily Gerasimov ◽  
Boris Knyazev

Terahertz surface plasmon resonance (SPR) sensors have been regarded as a promising technology in biomedicine due to their real-time, label-free, and ultrasensitive monitoring features. Different authors have suggested a lot of SPR sensors, including those based on 2D and 3D metamaterials, subwavelength gratings, graphene, and graphene nanotube, as well as others. However, one of the traditional approaches to realize high sensitivity SPR sensors based on metal diffraction gratings has been studied poorly in the terahertz frequency range. In this article, a linear metal rectangular diffraction grating with high aspect ratio is studied. The influence of the grating structure parameters on the sensor sensitivity is simulated. Effects arising from different ratios of depth and width were discovered and explained. The results show that the sensitivity can be increased to 2.26 THz/RIU when the refractive index range of the gas to measure is between 1 and 1.002 with the resolution 5×10−5 RIU.


2021 ◽  
Author(s):  
valter drazic ◽  
Oksana Shramkova ◽  
Bobin Varghese ◽  
valter blonde ◽  
Vincent Brac de la Perriere ◽  
...  

2021 ◽  
Author(s):  
◽  
Farzaneh Fadakar Masouleh

<p>Conventional optics suffer from a fundamental resolution limit due to the nature of light. The near-field superlens concept was introduced two decades ago, and its theory for enabling high resolution imaging is well-established now. Initially, this superlens, which has a simple setup, became a hot topic given the proposition of overcoming the diffraction limit. It has been demonstrated that a near-field superlens can reconstruct images using evanescent waves emanating from small objects by means of resonant excitations on the surface of the superlens. A modified version of the superlens named the far-field superlens is theorized to be able to project the near-field subwavelength information to the far-field region. By design, the far-field superlens is a near-field superlens with nanostructures added on top of it. These nanostructures, referred to as diffraction gratings help couple object information available in the evanescent waves to the far-field. Work reported in this thesis is divided to two major sections. The first describes the modelling technique that investigates the performance of a far-field superlens. This section focuses on evaluating the impact of the diffraction gratings geometry and the object size on the far-field superlens performance as well as the resulting far-field pattern. It was shown that a far-field superlens with a nanograting having a duty cycle of 40% to 50% produces the maximum intensity and contrast in the far-field interactions. For periodic rectangular objects, an inverse-trapezoidal nanograting was shown to provide the best contrast and intensity for far-field interactions. The minimal simulation domain to model a symmetric far-field superlens design was determined both in 2D and 3D. This input reduced the required modelling time and resources. Finally, a 3D far-field superlens model was proposed, and the effect of light polarization on the far-field pattern was studied. The second section of this thesis contains the experimental study that explores a new material as a potential candidate for the construction of far-field superlens. The material conventionally used for superlens design is silver, as its plasmonic properties are well-established. However, scaling down silver features to the nanoscale introduces fundamental fabrication challenges. Furthermore, silver oxidizes due to its reactions with sulphur compounds at ambient conditions, which means that operating a silver far-field superlens is only possible in a well-controlled environment. This disagrees with our proposed concept of a low-cost and robust superlens imaging device. On the other hand, highly doped semiconductors are emerging candidates for plasmonic applications due to the possibility of tuning their optical and electrical properties during the fabrication process. While the working principle of a superlens is independent of the plasmonic material of choice, every plasmonic material has a particular range of operating wavelengths. The pros and cons of each plasmonic material are usually identified once used experimentally. In this work, aluminium-doped zinc oxide was the proposed material of choice for the far-field superlens design. The second part of this thesis details the characterization results of the optical, electrical and structural properties of this proposed alternative. Our aluminium-doped zinc oxide samples were highly transparent for large parts of the spectrum. Their carrier concentration was of the order of 10+20 cm-3, and a resistivity of about 10-3 Ω.cm was achieved. The modelled dielectric permittivity for the studied samples showed a cross-over frequency in the near-infrared region, with the highest plasma frequency achieved in this study being 4710 cm-1.</p>


2021 ◽  
Author(s):  
◽  
Farzaneh Fadakar Masouleh

<p>Conventional optics suffer from a fundamental resolution limit due to the nature of light. The near-field superlens concept was introduced two decades ago, and its theory for enabling high resolution imaging is well-established now. Initially, this superlens, which has a simple setup, became a hot topic given the proposition of overcoming the diffraction limit. It has been demonstrated that a near-field superlens can reconstruct images using evanescent waves emanating from small objects by means of resonant excitations on the surface of the superlens. A modified version of the superlens named the far-field superlens is theorized to be able to project the near-field subwavelength information to the far-field region. By design, the far-field superlens is a near-field superlens with nanostructures added on top of it. These nanostructures, referred to as diffraction gratings help couple object information available in the evanescent waves to the far-field. Work reported in this thesis is divided to two major sections. The first describes the modelling technique that investigates the performance of a far-field superlens. This section focuses on evaluating the impact of the diffraction gratings geometry and the object size on the far-field superlens performance as well as the resulting far-field pattern. It was shown that a far-field superlens with a nanograting having a duty cycle of 40% to 50% produces the maximum intensity and contrast in the far-field interactions. For periodic rectangular objects, an inverse-trapezoidal nanograting was shown to provide the best contrast and intensity for far-field interactions. The minimal simulation domain to model a symmetric far-field superlens design was determined both in 2D and 3D. This input reduced the required modelling time and resources. Finally, a 3D far-field superlens model was proposed, and the effect of light polarization on the far-field pattern was studied. The second section of this thesis contains the experimental study that explores a new material as a potential candidate for the construction of far-field superlens. The material conventionally used for superlens design is silver, as its plasmonic properties are well-established. However, scaling down silver features to the nanoscale introduces fundamental fabrication challenges. Furthermore, silver oxidizes due to its reactions with sulphur compounds at ambient conditions, which means that operating a silver far-field superlens is only possible in a well-controlled environment. This disagrees with our proposed concept of a low-cost and robust superlens imaging device. On the other hand, highly doped semiconductors are emerging candidates for plasmonic applications due to the possibility of tuning their optical and electrical properties during the fabrication process. While the working principle of a superlens is independent of the plasmonic material of choice, every plasmonic material has a particular range of operating wavelengths. The pros and cons of each plasmonic material are usually identified once used experimentally. In this work, aluminium-doped zinc oxide was the proposed material of choice for the far-field superlens design. The second part of this thesis details the characterization results of the optical, electrical and structural properties of this proposed alternative. Our aluminium-doped zinc oxide samples were highly transparent for large parts of the spectrum. Their carrier concentration was of the order of 10+20 cm-3, and a resistivity of about 10-3 Ω.cm was achieved. The modelled dielectric permittivity for the studied samples showed a cross-over frequency in the near-infrared region, with the highest plasma frequency achieved in this study being 4710 cm-1.</p>


2021 ◽  
Author(s):  
Hugo Bruhier ◽  
Isabelle VERRIER ◽  
Thiaka GUEYE ◽  
Christelle VARENNE ◽  
Olivier Parriaux ◽  
...  

2021 ◽  
Author(s):  
Tatsuhiro Hirose ◽  
Takahiro Numai

Abstract This paper reports on improvement of stability of the fundamental horizontal transverse mode in a ridge-type semiconductor laser by incorporating transversal diffraction gratings. Kinks do not appear in current versus light-output curves by appropriately designing the number of the grating periods when the mesa width is 5 μm in which kinks exist in current versus light-output curves for conventional ridge-type semiconductor lasers.


2021 ◽  
Vol 85 (12) ◽  
pp. 1496-1500
Author(s):  
K. G. Kamiak ◽  
O. S. Kabanova ◽  
I. I. Rushnova ◽  
E. A. Melnikova ◽  
A. L. Tolstik

2021 ◽  
Vol 2015 (1) ◽  
pp. 012049
Author(s):  
Nikita Golovastikov ◽  
Dmitry Bykov ◽  
Leonid Doskolovich

Abstract Using scattering matrix formalism we derive analytical expressions for the eigenmodes of a composite structure consisting of two dielectric diffraction gratings with Lorentzian profile in reflection. Analyzing these expressions we prove formation of two distinct pairs of exceptional points, provide analytical approximations for their coordinates and by rigorous simulation demonstrate eigenmodes interchange as a result of encircling said exceptional points.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012173
Author(s):  
A I Solomonov ◽  
S I Pavlov ◽  
P I Lazarenko ◽  
V V Kovalyuk ◽  
A D Golikov ◽  
...  

Abstract The method of spectral Fourier microscopy was used to study the reflection spectra with an angular resolution of submicron periodic gratings based on amorphous and crystalline Ge2Sb2Te5. The form of the dispersion curves of quasi-waveguide modes in the structures under study was established. The experimental data were compared with the calculations of dispersion curves in synthesized diffraction gratings. Reasonable agreement between theoretical and experimental data was obtained.


2021 ◽  
Vol 273 ◽  
pp. 115387
Author(s):  
Jolanta Konieczkowska ◽  
Anna Kozanecka-Szmigiel ◽  
Karolina Bujak ◽  
Dariusz Szmigiel ◽  
Jan Grzegorz Małecki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document