THz-radiation from InAs with various surface orientations in a magnetic field

Author(s):  
H. Takahashi ◽  
Y. Suzuki ◽  
M. Sakai ◽  
S. Ono ◽  
N. Sarukura ◽  
...  
Keyword(s):  
1998 ◽  
Vol 37 (Part 2, No. 2A) ◽  
pp. L125-L126 ◽  
Author(s):  
Nobuhiko Sarukura ◽  
Hideyuki Ohtake ◽  
Zhenlin Liu ◽  
Taro Itatani ◽  
Takeyoshi Sugaya ◽  
...  

2010 ◽  
Vol 28 (4) ◽  
pp. 531-537 ◽  
Author(s):  
R.P. Sharma ◽  
A. Monika ◽  
P. Sharma ◽  
P. Chauhan ◽  
A. Ji

AbstractThis paper presents an investigation of the excitation of a Tera hertz (THz) radiation by nonlinear interaction of a circularly polarized high power laser beam and density ripple in collisionless magneto plasma. The ponderomotive force due to the nonlinear interaction between the laser and density ripple generates a nonlinear current at a difference frequency. If the appropriate phase matching conditions are satisfied and the frequency of the ripple is appropriate, then this difference frequency can be brought in the THz range. Filamentation (self focusing) of a circularly polarized beam propagating along the direction of ambient magnetic field in plasma is first investigated within paraxial ray approximation. The beam gets focused when the initial power of the laser beam is greater than its critical power. Resulting localized beam couples with the pre-existing density ripple to produce a nonlinear current driving the THz radiation. Analytical expressions for the beam width of the laser beam, electric vector of the THz wave have been obtained. By changing the strength of the magnetic field, one can enhance or suppress the THz emission. For typical laser beam and plasma parameters with the incident laser power flux = 1014 W/cm2, laser beam radius (r0) = 40 µm, laser frequency (ω0) = 1014 rad/s and plasma density (n0) = 3 × 1018 cm−3, normalized ripple density amplitude (μ) = 0.3, the produced THz emission can be at the level of Giga watt in power.


2001 ◽  
Vol 40 (Part 2, No. 7A) ◽  
pp. L681-L683 ◽  
Author(s):  
Tze-An Liu ◽  
Kai-Feng Huang ◽  
Ci-Ling Pan ◽  
Shingo Ono ◽  
Hideyuki Ohtake ◽  
...  

2015 ◽  
Vol 33 (4) ◽  
pp. 741-747 ◽  
Author(s):  
Ram Kishor Singh ◽  
R. P. Sharma

AbstractThis paper presents a theoretical model for efficient terahertz (THz) radiation by self-focused amplitude-modulated laser beam in preformed ripple density plasma. The density of plasma is modified due to ponderomotive nonlinearity which arises because of the nonuniform spatial profile of the laser beam in magnetized plasma and leads to the self-focusing of the laser beam. The rate of self-focusing depends on the intensity of the amplitude-modulated beam as well as on the externally applied magnetic field strength. The electron also experiences time-dependent ponderomotive force by the laser beam at modulated frequency. A nonlinear current at THz frequency arises on account of the coupling between the ripple density plasma and nonlinear oscillatory velocity of the electrons. The yield of the generated THz radiation enhances with enhancement in self-focusing of the laser beam and applied magnetic field.


Sign in / Sign up

Export Citation Format

Share Document