Far-Infrared and Raman Spectra of Ammonium Fluoride and Ammonium Fluoride—d4

1970 ◽  
Vol 24 (1) ◽  
pp. 16-20 ◽  
Author(s):  
J. R. Durig ◽  
D. J. Antion

The far-infrared spectra of thin films of NH4F and ND4F and the Raman spectra of polycrystalline samples of both compounds have been recorded at −170°C. Two low-frequency lattice vibrations were observed in each spectrum and these have been assigned as optical translations on the basis of their isotopic shift factors. Librational modes were not observed in any of the spectra.

1978 ◽  
Vol 31 (10) ◽  
pp. 2137 ◽  
Author(s):  
GA Bowmaker ◽  
RJ Knappstein ◽  
SF Tham

The infrared and Raman spectra of [Et3PcuI]4 and [Et3AsCuI]4 have been measured, and bands have been assigned to vibrations of the ligand and of the Td Cu4I4 core. The far-infrared spectra show two strong T2 v(CuI) bands at about 90 and 140 cm-1, the higher frequency member of which has a Raman counterpart which shows possible longitudinal-transverse splitting. The Raman spectra also show an intense band at about 50 cm-1. Similar features have been observed in the low-frequency vibrational spectra of [Et2S]3 [CuI]4, [C5H5NcuI]4, [C5H11NAgI]4, [Et3PAgBr]4 and [Et3PagCl]4, although the last two compounds gave only a single broad band in the v(MX) region.


1979 ◽  
Vol 32 (7) ◽  
pp. 1443 ◽  
Author(s):  
GA Bowmaker ◽  
L Tan

A number of different methods for preparing anionic Group 1B metal thiolate complexes have been investigated. The compounds [Me4N] [CU2(SMe)3] and [Et4N] [Ag5(SBut)6] are reported for the first time, and new methods for preparing the previously known compounds [Et4N] [Cu5(SBut)6], [Me4N]2 [CU5(SPh)7] and [Et4N]2 [Cu5(SPh)7] are described. The far-infrared spectra of the above compounds, and of CuSMe, CuSBut, AgSBut, [Me4N]2 [CU4(SPh)6] and [Me4N]2 [Ag5(SPh)7] have been obtained, and metal-sulfur stretching bands are assigned in the 150-350 cm-1 region. The low-frequency Raman spectra have also been obtained for some of these compounds. Possible structures for the new compounds are considered in the light of the low-frequency vibrational spectra.


1971 ◽  
Vol 49 (14) ◽  
pp. 2459-2462 ◽  
Author(s):  
R. Savoie ◽  
M. Pézolet

The Raman and far-infrared spectra of crystalline cyanogen iodide have been recorded. High-frequency shoulders alongside the Raman bands confirm the piezoelectric nature of this solid and allow an estimate to be made of the frequencies of the longitudinal modes associated to the fundamental vibrations. Dipole derivatives calculated from these frequencies agree qualitatively with those obtained from infrared band intensity measurements.


1973 ◽  
Vol 27 (1) ◽  
pp. 22-26 ◽  
Author(s):  
S. M. Craven ◽  
F. F. Bentley ◽  
D. F. Pensenstadler

The low frequency infrared spectra from 450 to 75 cm−1 of seven oximes and five aldoximes have been recorded for pure samples and for dilute solutions in cyclohexane. An intense characteristic band is present in the solution spectra at 367 ± 10 cm−1. This characteristic band shifts to 275 ± 10 cm−1 in the spectra of the OD compounds. The 367 ± 10 cm−1 and 275 ± 10 cm−1 bands are assigned to OH and OD torsional vibrations. A comparison of the solution spectra with spectra of the solid samples indicated that the OH … N hydrogen bond stretch of oximes and aldoximes occurs in 300 to 200 cm−1 region. Strong bands also are present in 140 to 100 cm−1 region which are due to OH … N bending modes or perhaps lattice vibrations.


1997 ◽  
Vol 15 (1) ◽  
pp. 61-67 ◽  
Author(s):  
T.S. Perova ◽  
D.H. Christensen ◽  
O. Faurskov Nielsen

1998 ◽  
Vol 102 (12) ◽  
pp. 2131-2136 ◽  
Author(s):  
Francesco Luigi Gervasio ◽  
Gianni Cardini ◽  
Pier Remigio Salvi ◽  
Vincenzo Schettino

1972 ◽  
Vol 45 (6) ◽  
pp. 1664-1668 ◽  
Author(s):  
Shunsuke Meshitsuka ◽  
Hiroaki Takahashi ◽  
Keniti Higasi ◽  
Bernhard Schrader

1983 ◽  
Vol 61 (10) ◽  
pp. 2282-2284 ◽  
Author(s):  
A. Agarwal ◽  
D. P. Khandelwal ◽  
H. D. Bist

The far infrared and Raman spectra of polyerystalline lithium formate monohydrate and the Rayleigh wing scattering of its aqueous solutions are reported. Three new bands in solid and bands due to librations of HCOO− and the quasi-tetrahedral structure of water in solutions have been identified.


Sign in / Sign up

Export Citation Format

Share Document