Resonant Two-Photon Ionization of CBZ-Derivatized Nonaromatic Peptides Using Pulsed Laser Desorption in Supersonic Beam Mass Spectrometry

1988 ◽  
Vol 42 (3) ◽  
pp. 411-417 ◽  
Author(s):  
Liang Li ◽  
David M. Lubman

Resonant two-photon ionization (R2PI) of nonaromatic peptides is studied with the use of CBZ-derivatization as a means of providing an absorbing aromatic center in the near-UV region at 266 nm. The peptides are then vaporized with a pulsed laser-induced desorption method, with subsequent entrainment of the desorbed neutral species into a supersonic expansion. The CBZ-derivatized peptides are then ionized and mass analyzed in a time-of-flight mass spectrometer. The resulting R2PI/MPI-induced fragmentation-ionization patterns generally yield the molecular ion as well as fragments due to specific bond cleavages which are characteristic of the structure of the peptide. Thus, the resulting mass spectra can be used for identification and structural analysis of these small peptides. Most significantly, the laser-induced fragmentation can be used to distinguish between isomeric peptides containing Ile, Leu, or Nle.

1987 ◽  
Vol 41 (3) ◽  
pp. 431-436 ◽  
Author(s):  
Roger Tembreull ◽  
David M. Lubman

Resonant two-photon ionization (R2PI) has been demonstrated for several classes of biomolecules in a supersonic jet. These thermally labile and nonvolatile species have been vaporized with pulsed laser desorption, with the use of a CO2 laser from a ceramic surface with subsequent entrapment in a jet expansion. R2PI is then demonstrated in a time-of-flight mass spectrometer (TOFMS) with the use of ultraviolet laser radiation at either 280 or 266 nm. The 280-nm wavelength is found to be a fairly general tool for exciting the π-π* transition of the molecules under study, viz., metabolites of catecholamines, indoleamines, and tyrosine near their respective origin regions. The resulting mass spectra exhibit soft ionization where either molecular ions or minimal fragmentation is produced. At frequencies of much higher energy than that of the origin, fragmentation becomes increasingly difficult to prevent.


2010 ◽  
Vol 14 (04) ◽  
pp. 314-323 ◽  
Author(s):  
Joseph M. Beames ◽  
Timothy D. Vaden ◽  
Andrew J. Hudson

We will present resonant two-photon ionization spectra for meso-tetraphenylporphyrin, H 2 TPP , measured under isolated conditions. The polycrystalline compound was vaporized, in vacuo, using both thermal and laser desorption, and seeded into a supersonic expansion of an inert-carrier gas. The molecules remain largely intact in the gaseous phase. However, the two techniques for vaporizing H 2 TPP give different internal temperatures for the isolated substrate, with greater vibrational cooling achieved using laser desorption. A comparison of the peak positions and intensities in the resonant two-photon ionization spectra of thermal- and laser-desorbed molecules provides an insight into the vibrational structure of the Q band. In particular, the greater contribution made by electronic transitions originating from higher vibrational levels in the ground state of H 2 TPP is emphasized. We conclude that vibronic coupling in the ground electronic state plays an important role in a quantum-mechanical interpretation of the Q band.


Sign in / Sign up

Export Citation Format

Share Document