scholarly journals NF1-cAMP signaling dissociates cell type–specific contributions of striatal medium spiny neurons to reward valuation and motor control

PLoS Biology ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. e3000477 ◽  
Author(s):  
Laurie P. Sutton ◽  
Brian S. Muntean ◽  
Olga Ostrovskaya ◽  
Stefano Zucca ◽  
Maria Dao ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hope Kronman ◽  
Felix Richter ◽  
Benoit Labonté ◽  
Ramesh Chandra ◽  
Shan Zhao ◽  
...  

2020 ◽  
Author(s):  
Jing He ◽  
Michael Kleyman ◽  
Jianjiao Chen ◽  
Aydin Alikaya ◽  
Kathryn M. Rothenhoefer ◽  
...  

AbstractThe striatum is the neural interface between dopamine reward signals and cortico-basal ganglia circuits responsible for value assignments, decisions, and actions. Medium spiny neurons (MSNs) make up the vast majority of striatal neurons and are traditionally classified as two distinct types: direct- and indirect-pathway MSNs. The direct- and indirect-pathway model has been useful for understanding some aspects of striatal functions, but it accounts for neither the anatomical heterogeneity, nor the functional diversity of the striatum. Here, we use single nucleus RNA-sequencing and Fluorescent In-Situ Hybridization to explore MSN diversity in the Rhesus macaque striatum. We identified MSN subtypes that correspond to the major subdivisions of the striatum. These include dorsal striatum subtypes associated with striosome and matrix compartments, as well as ventral striatum subtypes associated with the shell of the nucleus accumbens. We also describe a cell type that is anatomically restricted to “Neurochemically Unique Domains in the Accumbens and Putamen (NUDAPs)”. Together, these results help to advance nonhuman primate studies into the genomics era. The identified cell types provide a comprehensive blueprint for investigating cell type-specific information processing, and the differentially expressed genes lay a foundation for achieving cell type-specific transgenesis in the primate striatum.


2013 ◽  
Vol 256 ◽  
pp. 279-283 ◽  
Author(s):  
Alex S. James ◽  
Jane Y. Chen ◽  
Carlos Cepeda ◽  
Nitish Mittal ◽  
James David Jentsch ◽  
...  

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Laurie Sutton ◽  
Maria Dao ◽  
Muntean Brian ◽  
Kirill Martemyanov

2021 ◽  
Author(s):  
Marija Fjodorova ◽  
Zoe Noakes ◽  
Daniel C. De La Fuente ◽  
Adam C. Errington ◽  
Meng Li

SummaryBackgroundStriatal medium spiny neurons (MSNs) are preferentially lost in Huntington’s disease. Genomic studies also implicate a direct role for MSNs in schizophrenia, a psychiatric disorder known to involve cortical neuron dysfunction. It remains unknown whether the two diseases share similar MSN pathogenesis or if neuronal deficits can be attributed to cell type-dependent biological pathways. Transcription factor BCL11B, which is expressed by all MSNs and deep layer cortical neurons, was recently proposed to drive selective neurodegeneration in Huntington’s disease and identified as a candidate risk gene in schizophrenia.MethodsUsing human stem cell-derived neurons lacking BCL11B as a model, we investigated cellular pathology in MSNs and cortical neurons in the context of these disorders. Integrative analyses between differentially expressed transcripts and published GWAS datasets identified cell type-specific disease-related phenotypes.ResultsWe uncover a role for BCL11B in calcium homeostasis in both neuronal types, while deficits in mitochondrial function and protein kinase A (PKA)-dependent calcium transients are detected only in MSNs. Moreover, BCL11B-deficient MSNs display abnormal responses to glutamate and fail to integrate dopaminergic and glutamatergic stimulation, a key feature of striatal neurons in vivo. Gene enrichment analysis reveals overrepresentation of disorder risk genes among BCL11B-regulated pathways, primarily relating to cAMP-PKA-calcium signaling axis and synaptic signaling.ConclusionsOur study indicates that Huntington’s disease and schizophrenia are likely to share neuronal pathogenesis where dysregulation of intracellular calcium levels is found in both striatal and cortical neurons. In contrast, reduction in PKA signaling and abnormal dopamine/glutamate receptor signaling is largely specific to MSNs.


2000 ◽  
Vol 84 (5) ◽  
pp. 2225-2236 ◽  
Author(s):  
Robert C. Foehring ◽  
Paul G. Mermelstein ◽  
Wen-Jie Song ◽  
Sasha Ulrich ◽  
D. James Surmeier

Whole cell recordings from acutely dissociated neocortical pyramidal neurons and striatal medium spiny neurons exhibited a calcium-channel current resistant to known blockers of L-, N-, and P/Q-type Ca2+ channels. These R-type currents were characterized as high-voltage–activated (HVA) by their rapid deactivation kinetics, half-activation and half-inactivation voltages, and sensitivity to depolarized holding potentials. In both cell types, the R-type current activated at potentials relatively negative to other HVA currents in the same cell type and inactivated rapidly compared with the other HVA currents. The main difference between cell types was that R-type currents in neocortical pyramidal neurons inactivated at more negative potentials than R-type currents in medium spiny neurons. Ni2+ sensitivity was not diagnostic for R-type currents in either cell type. Single-cell RT-PCR revealed that both cell types expressed the α1E mRNA, consistent with this subunit being associated with the R-type current.


ASN NEURO ◽  
2012 ◽  
Vol 4 (2) ◽  
pp. AN20110063 ◽  
Author(s):  
Yao-Ying Ma ◽  
Carlos Cepeda ◽  
Payush Chatta ◽  
Lana Franklin ◽  
Christopher J Evans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document