scholarly journals Allosteric Transitions of Supramolecular Systems Explored by Network Models: Application to Chaperonin GroEL

2009 ◽  
Vol 5 (4) ◽  
pp. e1000360 ◽  
Author(s):  
Zheng Yang ◽  
Peter Májek ◽  
Ivet Bahar
2018 ◽  
Vol 373 (1749) ◽  
pp. 20170182 ◽  
Author(s):  
D. Thirumalai ◽  
Changbong Hyeon

Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL–GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.


2017 ◽  
Author(s):  
D. Thirumalai ◽  
Changbong Hyeon

AbstractSignal transmission at the molecular level in many biological complexes occurs through allosteric transitions. They describe the response a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the Structural Perturbation Method (SPM), based on phonon propagation in solids, that can be used to determine the signal transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Applications to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drive the allosteric transitions dynamically. Both from a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the Iterative Annealing Mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function in a self-consistent manner.


2019 ◽  
Vol 42 ◽  
Author(s):  
Hanna M. van Loo ◽  
Jan-Willem Romeijn

AbstractNetwork models block reductionism about psychiatric disorders only if models are interpreted in a realist manner – that is, taken to represent “what psychiatric disorders really are.” A flexible and more instrumentalist view of models is needed to improve our understanding of the heterogeneity and multifactorial character of psychiatric disorders.


2019 ◽  
Vol 42 ◽  
Author(s):  
Don Ross

AbstractUse of network models to identify causal structure typically blocks reduction across the sciences. Entanglement of mental processes with environmental and intentional relationships, as Borsboom et al. argue, makes reduction of psychology to neuroscience particularly implausible. However, in psychiatry, a mental disorder can involve no brain disorder at all, even when the former crucially depends on aspects of brain structure. Gambling addiction constitutes an example.


Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


Author(s):  
James F. Hainfeld ◽  
Frederic R. Furuya ◽  
Kyra Carbone ◽  
Martha Simon ◽  
Beth Lin ◽  
...  

A recently developed 1.4 nm gold cluster has been found to be useful in labeling macromolecular sites to 1-3 nm resolution. The gold compound is organically derivatized to contain a monofunctional arm for covalent linking to biomolecules. This may be used to mark a specific site on a structure, or to first label a component and then reassemble a multicomponent macromolecular complex. Two examples are given here: the chaperonin groEL and ribosomes.Chaperonins are essential oligomeric complexes that mediate nascent polypeptide chain folding to produce active proteins. The E. coli chaperonin, groEL, has two stacked rings with a central hole ∽6 nm in diameter. The protein dihydrofolate reductase (DHFR) is a small protein that has been used in chain folding experiments, and serves as a model substrate for groEL. By labeling the DHFR with gold, its position with respect to the groEL complex can be followed. In particular, it was sought to determine if DHFR refolds on the external surface of the groEL complex, or whether it interacts in the central cavity.


1995 ◽  
Author(s):  
Robert T. Trotter ◽  
Anne M. Bowen ◽  
James M. Potter

Sign in / Sign up

Export Citation Format

Share Document