scholarly journals Quorum-Sensing Synchronization of Synthetic Toggle Switches: A Design Based on Monotone Dynamical Systems Theory

2016 ◽  
Vol 12 (4) ◽  
pp. e1004881 ◽  
Author(s):  
Evgeni V. Nikolaev ◽  
Eduardo D. Sontag
2015 ◽  
Author(s):  
Evgeni Nikolaev ◽  
Eduardo Sontag

Synthetic constructs in biotechnology, biocomputing, and modern gene therapy interventions are often based on plasmids or transfected circuits which implement some form of "on-off" switch. For example, the expression of a protein used for therapeutic purposes might be triggered by the recognition of a specific combination of inducers (e.g., antigens), and memory of this event should be maintained across a cell population until a specific stimulus commands a coordinated shut-off. The robustness of such a design is hampered by molecular ("intrinsic") or environmental ("extrinsic") noise, which may lead to spontaneous changes of state in a subset of the population and is reflected in the bimodality of protein expression, as measured for example using flow cytometry. In this context, a "majority-vote" correction circuit, which brings deviant cells back into the desired state, is highly desirable, and quorum-sensing has been suggested as a way for cells to broadcast their states to the population as a whole so as to facilitate consensus. In this paper, we propose what we believe is the first such design that has mathematically guaranteed properties of stability and auto-correction. Our approach is guided by concepts and theory from the field of "monotone" dynamical systems developed by M.\ Hirsch, H.\ Smith, and others. We benchmark our design by comparing it to an existing design which has been the subject of experimental and theoretical studies, illustrating its superiority in stability and self-correction of synchronization errors. Our stability analysis, based on dynamical systems theory, guarantees global convergence to steady states, ruling out unpredictable ("chaotic") behaviors and even sustained oscillations. These results are valid no matter what are the values of parameters, and are based only on the wiring diagram. The theory is complemented by extensive computational bifurcation analysis, performed for a biochemically-detailed and biologically-relevant model that we developed. Another novel feature of our approach is that our theorems on stability of steady states for homogeneous or mixed populations are valid independently of the number of cells in the population, and depend only on the relative proportions of each type of state. While monotone systems theory has been used previously for systems biology analysis, the current work illustrates its power for synthetic biology design, and thus has wider significance well beyond the application to the important problem of coordination of toggle switches.


2021 ◽  
Vol 31 (5) ◽  
pp. 053110
Author(s):  
Christophe Letellier ◽  
Ralph Abraham ◽  
Dima L. Shepelyansky ◽  
Otto E. Rössler ◽  
Philip Holmes ◽  
...  

2021 ◽  
pp. 102986492098831
Author(s):  
Andrea Schiavio ◽  
Pieter-Jan Maes ◽  
Dylan van der Schyff

In this paper we argue that our comprehension of musical participation—the complex network of interactive dynamics involved in collaborative musical experience—can benefit from an analysis inspired by the existing frameworks of dynamical systems theory and coordination dynamics. These approaches can offer novel theoretical tools to help music researchers describe a number of central aspects of joint musical experience in greater detail, such as prediction, adaptivity, social cohesion, reciprocity, and reward. While most musicians involved in collective forms of musicking already have some familiarity with these terms and their associated experiences, we currently lack an analytical vocabulary to approach them in a more targeted way. To fill this gap, we adopt insights from these frameworks to suggest that musical participation may be advantageously characterized as an open, non-equilibrium, dynamical system. In particular, we suggest that research informed by dynamical systems theory might stimulate new interdisciplinary scholarship at the crossroads of musicology, psychology, philosophy, and cognitive (neuro)science, pointing toward new understandings of the core features of musical participation.


Author(s):  
Daniel Seligson ◽  
Anne E. C. McCants

Abstract We can all agree that institutions matter, though as to which institutions matter most, and how much any of them matter, the matter is, paraphrasing Douglass North's words at the Nobel podium, unresolved after seven decades of immense effort. We suggest that the obstacle to progress is the paradigm of the New Institutional Economics itself. In this paper, we propose a new theory that is: grounded in institutions as coevolving sources of economic growth rather than as rules constraining growth; and deployed in dynamical systems theory rather than game theory. We show that with our approach some long-standing problems are resolved, in particular, the paradoxical and perplexingly pervasive influence of informal constraints on the long-run character of economies.


2017 ◽  
Vol 60 (2) ◽  
pp. 364-371 ◽  
Author(s):  
Ciprian Preda

AbstractLet S := {S(t)}t≥0 be a C0-semigroup of quasinilpotent operators (i.e., σ(S(t)) = {0} for eacht> 0). In dynamical systems theory the above quasinilpotency property is equivalent to a very strong concept of stability for the solutions of autonomous systems. This concept is frequently called superstability and weakens the classical ûnite time extinction property (roughly speaking, disappearing solutions). We show that under some assumptions, the quasinilpotency, or equivalently, the superstability property of a C0-semigroup is preserved under the perturbations of its infinitesimal generator.


Sign in / Sign up

Export Citation Format

Share Document