extrinsic noise
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 44)

H-INDEX

14
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Lingxia Qiao ◽  
Zhi-Bo Zhang ◽  
Wei Zhao ◽  
Ping Wei ◽  
Lei Zhang

Oscillatory behaviors, which are ubiquitous in transcriptional regulatory networks, are often subject to inevitable biological noise. Thus a natural question is how transcriptional regulatory networks can robustly achieve accurate oscillation in the presence of biological noise. Here, we search all two- and three-node transcriptional regulatory network topologies for those robustly capable of accurate oscillation against the parameter variability (extrinsic noise) or stochasticity of chemical reactions (intrinsic noise). We find that, no matter what source of the noise is applied, the topologies containing the repressilator with positive auto-regulation show higher robustness of accurate oscillation than those containing the activator-inhibitor oscillator, and additional positive auto-regulation enhances the robustness against noise. Nevertheless, the attenuation of different sources of noise is governed by distinct mechanisms: the parameter variability is buffered by the long period, while the stochasticity of chemical reactions is filtered by the high amplitude. Furthermore, we analyze the noise of a synthetic human nuclear factor κB (NF-κB) signaling network by varying three different topologies, and verify that the addition of a repressilator to the activator-inhibitor oscillator, which leads to the emergence of high-robustness motif—the repressilator with positive auto-regulation, improves the oscillation accuracy in comparison to the topology with only an activator-inhibitor oscillator. These design principles may be applicable to other oscillatory circuits.


2021 ◽  
Author(s):  
Lucy Ham ◽  
Megan Coomer ◽  
Michael P.H. Stumpf

Modelling and simulation of complex biochemical reaction networks form cornerstones of modern biophysics. Many of the approaches developed so far capture temporal fluctuations due to the inherent stochasticity of the biophysical processes, referred to as intrinsic noise. Stochastic fluctuations, however, predominantly stem from the interplay of the network with many other - and mostly unknown - fluctuating processes, as well as with various random signals arising from the extracellular world; these sources contribute extrinsic noise. Here we provide a computational simulation method to probe the stochastic dynamics of biochemical systems subject to both intrinsic and extrinsic noise. We develop an extrinsic chemical Langevin equation - a physically motivated extension of the chemical Langevin equation - to model intrinsically noisy reaction networks embedded in a stochastically fluctuating environment. The extrinsic CLE is a continuous approximation to the Chemical Master Equation (CME) with time-varying propensities. In our approach, noise is incorporated at the level of the CME, and can account for the full dynamics of the exogenous noise process, irrespective of timescales and their mismatches. We show that our method accurately captures the first two moments of the stationary probability density when compared with exact stochastic simulation methods, while reducing the computational runtime by several orders of magnitude. Our approach provides a method that is practical, computationally efficient and physically accurate to study systems that are simultaneously subject to a variety of noise sources.


2021 ◽  
Author(s):  
Alexander P Browning ◽  
Niloufar Ansari ◽  
Christopher Drovandi ◽  
Angus Johnston ◽  
Matthew J Simpson ◽  
...  

Biological heterogeneity is a primary contributor to the variation observed in experiments that probe dynamical processes, such as internalisation. Given that internalisation is the primary means by which cells absorb drugs, viruses and other material, quantifying cell-to-cell variability in internalisation is of high biological interest. Yet, it is common for studies of internalisation to neglect cell-to-cell variability. We develop a simple mathematical model of internalisation that captures the dynamical behaviour, cell-to-cell variation, and extrinsic noise introduced by flow cytometry. We calibrate our model through a novel distribution-matching approximate Bayesian computation algorithm to flow cytometry data collected from an experiment that probes the internalisation of antibody by transferrin receptors in C1R cells. Our model reproduces experimental observations, identifies cell-to-cell variability in the internalisation and recycling rates, and, importantly, provides information relating to inferential uncertainty. Given that our approach is agnostic to sample size and signal-to-noise ratio, our modelling framework is broadly applicable to identify biological variability in single-cell data from experiments that probe a range of dynamical processes.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lucy Ham ◽  
Marcel Jackson ◽  
Michael Stumpf

Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells ('intrinsic noise') from variability across the population ('extrinsic noise'). Here we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that 'pathway-reporters' compare favourably to the well-known, but often difficult to implement, dual-reporter method.


2021 ◽  
Vol 21 (9) ◽  
pp. 2278
Author(s):  
Stacey Aston ◽  
Reeve Molly ◽  
Yip Esther ◽  
Nardini Marko ◽  
Beierholm Ulrik

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shih-Chiang Lo ◽  
Chao-Xuan You ◽  
Bo-Ren Chen ◽  
Ching-Chu Hsieh ◽  
Cheng-En Li ◽  
...  

AbstractThere is a special node, which the large noise of the upstream element may not always lead to a broad distribution of downstream elements. This node is DNA, with upstream element TF and downstream elements mRNA and proteins. By applying the stochastic simulation algorithm (SSA) on gene circuits inspired by the fim operon in Escherichia coli, we found that cells exchanged the distribution of the upstream transcription factor (TF) for the transitional frequency of DNA. Then cells do an inverse transform, which exchanges the transitional frequency of DNA for the distribution of downstream products. Due to this special feature, DNA in the system of frequency modulation is able to reset the noise. By probability generating function, we know the ranges of parameter values that grant such an interesting phenomenon.


2021 ◽  
Author(s):  
Sebastian Persson ◽  
Niek Welkenhuysen ◽  
Sviatlana Shashkova ◽  
Samuel Wiqvist ◽  
Patrick Reith ◽  
...  

Mathematical modelling is an invaluable tool to describe dynamic cellular processes and to rationalise cell-to-cell variability within the population. This requires statistical methods to infer unknown model parameters from dynamic, multi-individual data accounting for heterogeneity caused by both intrinsic and extrinsic noise. Here we present PEPSDI, a scalable and flexible framework for Bayesian inference in state-space mixed-effects stochastic dynamic single-cell models. Unlike previous frameworks, PEPSDI imposes a few modelling assumptions when inferring unknown model parameters from time-lapse data. Specifically, it can infer model parameters when intrinsic noise is modelled by either exact or approximate stochastic simulators, and when extrinsic noise is modelled by either time-varying, or time-constant parameters that vary between cells. This allowed us to identify hexokinase activity as a source of extrinsic noise, and to deduce that sugar availability dictates cell-to-cell variability in the budding yeast Saccharomyces cerevisiae SNF1 nutrient sensing pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yvonne Krumbeck ◽  
Qian Yang ◽  
George W. A. Constable ◽  
Tim Rogers

AbstractUnderstanding the relationship between complexity and stability in large dynamical systems—such as ecosystems—remains a key open question in complexity theory which has inspired a rich body of work developed over more than fifty years. The vast majority of this theory addresses asymptotic linear stability around equilibrium points, but the idea of ‘stability’ in fact has other uses in the empirical ecological literature. The important notion of ‘temporal stability’ describes the character of fluctuations in population dynamics, driven by intrinsic or extrinsic noise. Here we apply tools from random matrix theory to the problem of temporal stability, deriving analytical predictions for the fluctuation spectra of complex ecological networks. We show that different network structures leave distinct signatures in the spectrum of fluctuations, and demonstrate the application of our theory to the analysis of ecological time-series data of plankton abundances.


2021 ◽  
Vol 18 (178) ◽  
pp. 20210274
Author(s):  
Philipp Thomas ◽  
Vahid Shahrezaei

The chemical master equation and the Gillespie algorithm are widely used to model the reaction kinetics inside living cells. It is thereby assumed that cell growth and division can be modelled through effective dilution reactions and extrinsic noise sources. We here re-examine these paradigms through developing an analytical agent-based framework of growing and dividing cells accompanied by an exact simulation algorithm, which allows us to quantify the dynamics of virtually any intracellular reaction network affected by stochastic cell size control and division noise. We find that the solution of the chemical master equation—including static extrinsic noise—exactly agrees with the agent-based formulation when the network under study exhibits stochastic concentration homeostasis , a novel condition that generalizes concentration homeostasis in deterministic systems to higher order moments and distributions. We illustrate stochastic concentration homeostasis for a range of common gene expression networks. When this condition is not met, we demonstrate by extending the linear noise approximation to agent-based models that the dependence of gene expression noise on cell size can qualitatively deviate from the chemical master equation. Surprisingly, the total noise of the agent-based approach can still be well approximated by extrinsic noise models.


Sign in / Sign up

Export Citation Format

Share Document