scholarly journals Slower environmental change hinders adaptation from standing genetic variation

PLoS Genetics ◽  
2018 ◽  
Vol 14 (11) ◽  
pp. e1007731 ◽  
Author(s):  
Thiago S. Guzella ◽  
Snigdhadip Dey ◽  
Ivo M. Chelo ◽  
Ania Pino-Querido ◽  
Veronica F. Pereira ◽  
...  
2016 ◽  
Author(s):  
Eleanor K. O’Brien ◽  
Megan Higgie ◽  
Alan Reynolds ◽  
Ary A. Hoffmann ◽  
Jon R. Bridle

ABSTRACTPredicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species Distribution Models (SDMs) use the current relationship between environmental variation and species’ abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (1) that the relationship of environment with abundance or fitness is constant throughout a species’ range and will remain so in future, and (2) that abiotic factors (e.g. temperature, humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high altitude sites, and declined towards warmer, low altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high altitude than low altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (1) measuring genetic variation of key traits under ecologically relevant conditions, and (2) considering the effect of biotic interactions when predicting species’ responses to environmental change.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2835 ◽  
Author(s):  
Sarah E. Diamond ◽  
Ryan A. Martin

Some populations will cope with human-induced environmental change, and others will undergo extirpation; understanding the mechanisms that underlie these responses is key to forecasting responses to environmental change. In cases where organisms cannot disperse to track suitable habitats, plastic and evolved responses to environmental change will determine whether populations persist or perish. However, the majority of studies consider plasticity and evolution in isolation when in fact plasticity can shape evolution and plasticity itself can evolve. In particular, whether cryptic genetic variation exposed by environmental novelty can facilitate adaptive evolution has been a source of controversy and debate in the literature and has received even less attention in the context of human-induced environmental change. However, given that many studies indicate organisms will be unable to keep pace with environmental change, we need to understand how often and the degree to which plasticity can facilitate adaptive evolutionary change under novel environmental conditions.


2018 ◽  
Author(s):  
Sarah A. Gignoux-Wolfsohn ◽  
Malin L. Pinsky ◽  
Kathleen Kerwin ◽  
Carl Herzog ◽  
MacKenzie Hall ◽  
...  

AbstractRapid evolution of advantageous traits following abrupt environmental change can help populations grow and avoid extinction through evolutionary rescue. Here, we provide the first genetic evidence for rapid evolution in bat populations affected by white-nose syndrome (WNS). By comparing genetic samples from before and after little brown bat populations were decimated by WNS, we identified signatures of soft selection on standing genetic variation. This selection occurred at multiple loci in genes linked to hibernation behavior rather than immune function, suggesting that differences in hibernation strategy have allowed these bats to survive infection with WNS. Through these findings, we suggest that evolutionary rescue can be a conservationrelevant process even in slowly reproducing taxa threatened with extinction.


2017 ◽  
Author(s):  
Thiago S. Guzella ◽  
Snigdhadip Dey ◽  
Ivo M. Chelo ◽  
Ania Pino-Querido ◽  
Veronica F. Pereira ◽  
...  

AbstractEvolutionary responses to environmental change depend on the time available for adaptation before environmental degradation leads to extinction. Explicit tests of this relationship are limited to microbes where adaptation depends on the order of mutation accumulation, excluding standing genetic variation which is key for most natural species. When adaptation is determined by the amount of heritable genotype-by-environment fitness variance then genetic drift and/or maintenance of similarly fit genotypes may deter adaptation to slower the environmental changes. To address this hypothesis, we perform experimental evolution with self-fertilizing populations of the nematode Caenorhabditis elegans and develop a new inference model that follows pre-existing genotypes to describe natural selection in changing environments. Under an abrupt change, we find that selection rapidly increases the frequency of genotypes with high fitness in the most extreme environment. In contrast, under slower environmental change selection favors those genotypes that are worse at the most extreme environment. We further demonstrate with a second set of evolution experiments that, as a consequence of slower environmental change, population bottlenecks and small population sizes lead to the loss of beneficial genotypes, while maintenance of polymorphism impedes their fixation in large populations. Taken together, these results indicate that standing variation for genotype-by-environment fitness interactions alters the pace and outcome of adaptation under environmental change.


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. 455-457 ◽  
Author(s):  
Elias M. Oziolor ◽  
Noah M. Reid ◽  
Sivan Yair ◽  
Kristin M. Lee ◽  
Sarah Guberman VerPloeg ◽  
...  

Radical environmental change that provokes population decline can impose constraints on the sources of genetic variation that may enable evolutionary rescue. Adaptive toxicant resistance has rapidly evolved in Gulf killifish (Fundulus grandis) that occupy polluted habitats. We show that resistance scales with pollution level and negatively correlates with inducibility of aryl hydrocarbon receptor (AHR) signaling. Loci with the strongest signatures of recent selection harbor genes regulating AHR signaling. Two of these loci introgressed recently (18 to 34 generations ago) from Atlantic killifish (F. heteroclitus). One introgressed locus contains a deletion in AHR that confers a large adaptive advantage [selection coefficient (s) = 0.8]. Given the limited migration of killifish, recent adaptive introgression was likely mediated by human-assisted transport. We suggest that interspecies connectivity may be an important source of adaptive variation during extreme environmental change.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 875-884 ◽  
Author(s):  
H Allen Orr ◽  
Andrea J Betancourt

Abstract We consider populations that adapt to a sudden environmental change by fixing alleles found at mutation-selection balance. In particular, we calculate probabilities of fixation for previously deleterious alleles, ignoring the input of new mutations. We find that “Haldane's sieve”—the bias against the establishment of recessive beneficial mutations—does not hold under these conditions. Instead probabilities of fixation are generally independent of dominance. We show that this result is robust to patterns of sex expression for both X-linked and autosomal loci. We further show that adaptive evolution is invariably slower at X-linked than autosomal loci when evolution begins from mutation-selection balance. This result differs from that obtained when adaptation uses new mutations, a finding that may have some bearing on recent attempts to distinguish between hitchhiking and background selection by contrasting the molecular population genetics of X-linked vs. autosomal loci. Last, we suggest a test to determine whether adaptation used new mutations or previously deleterious alleles from the standing genetic variation.


Sign in / Sign up

Export Citation Format

Share Document