beneficial mutations
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 47)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Minako Izutsu ◽  
Devin M. Lake ◽  
Zachary W. D. Matson ◽  
Jack P. Dodson ◽  
Richard E. Lenski

Population bottlenecks are common in nature, and they can impact the rate of adaptation in evolving populations. On the one hand, each bottleneck reduces the genetic variation that fuels adaptation. On the other hand, fewer founders can undergo more generations and leave more descendants in a resource-limited environment, which allows surviving beneficial mutations to spread more quickly. Here we investigate the impact of repeated bottlenecks on the dynamics of adaptation in experimental populations of Escherichia coli. We propagated 48 populations under four dilution regimes (2-, 8-, 100-, and 1000-fold), all reaching the same final size each day, for 150 days. A simple model in which adaptation is limited by the supply rate of beneficial mutations predicts that fitness gains should be maximized with ~8-fold dilutions. The model also assumes that selection acts only on the overall growth rate and is otherwise identical across dilution regimes. However, we found that selection in the 2-fold regime was qualitatively different from the other treatments. Moreover, we observed earlier and greater fitness gains in the populations subjected to 100- and 1000-fold dilutions than in those that evolved in the 8 fold regime. We also ran simulations using parameters estimated independently from a long-term experiment using the same ancestral strain and environment. The simulations produced dynamics similar to our empirical results under these regimes, and they indicate that the simple model fails owing to the assumption that the supply of beneficial mutations limits adaptation.


2021 ◽  
Author(s):  
Yevgeniy Raynes ◽  
Daniel M Weinreich

Ploidy - the number of homologous chromosome sets in a cell - is remarkably variable across the natural world, yet the evolutionary processes that have resulted in such diversity remain poorly understood. Here we use stochastic agent-based simulations to model ploidy evolution under the influence of indirect selection, i.e., selection mediated solely by statistical associations with fitness-affecting mutations. We find that in non-equilibrium asexual populations, the sign of selection on ploidy can change with population size - a phenomenon we have previously termed sign inversion. In large populations, ploidy dynamics are dominated by indirect effects of selection on beneficial mutations, which favors haploids over diploids. However, as population size declines, selection for beneficial mutations is neutralized by random genetic drift before drift can overwhelm selection against the cost of the deleterious mutational load. As a result, in small populations indirect selection is dominated by the cost of the deleterious load, which favors diploids over haploids. Our work adds to the growing body of evidence challenging established evolutionary theory that population size can affect only the efficiency, but not the sign, of natural selection.


2021 ◽  
Author(s):  
Grace Avecilla ◽  
Julie Chuong ◽  
Fangfei Li ◽  
Gavin J Sherlock ◽  
David Gresham ◽  
...  

The rate of adaptive evolution depends on the rate at which beneficial mutations are introduced into a population and the fitness effects of those mutations. The rate of beneficial mutations and their expected fitness effects is often difficult to empirically quantify. As these two parameters determine the pace of evolutionary change in a population, the dynamics of adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we use the observed CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de novo mutation and their fitness effects using simulation-based Bayesian likelihood-free inference approaches. We tested the suitability of two evolutionary models: a standard Wright-Fisher model and a chemostat growth model. We evaluated two likelihood-free inference algorithms: the well-established Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE) algorithm, which applies an artificial neural network to directly estimate the posterior distribution. By systematically evaluating the suitability of different inference methods and models we show that NPE has several advantages over ABC-SMC and that a Wright-Fisher evolutionary model suffices in most cases. Using our validated inference framework, we estimate the CNV formation rate at the GAP1 locus in yeast as 10-4.7 -10-4 per cell division, and a selection coefficient of 0.04 - 0.1 per generation for GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our estimates using barcode lineage tracking and pairwise fitness assays. Our results are consistent with a high beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial single-nucleotide mutations, explaining their outsized importance in rapid adaptive evolution. More generally, our study demonstrates the utility of novel simulation-based likelihood-free inference methods for inferring the rates and effects of evolutionary processes from empirical data.


2021 ◽  
Author(s):  
Yipei Guo ◽  
Ariel Amir

Adaptation dynamics on fitness landscapes is often studied theoretically in the strong-selection, weak-mutation (SSWM) regime. However, in a large population, multiple beneficial mutants can emerge before any of them fixes in the population. Competition between mutants is known as clonal interference, and how it affects the form of long-term fitness trajectories in the presence of epistasis is an open question. Here, by considering how changes in fixation probabilities arising from weak clonal interference affect the dynamics of adaptation on fitness-parameterized landscapes, we find that the change in the form of fitness trajectory arises only through changes in the supply of beneficial mutations (or equivalently, the beneficial mutation rate). Furthermore, a depletion of beneficial mutations as a population climbs up the fitness landscape can speed up the functional form of the fitness trajectory, while an enhancement of the beneficial mutation rate does the opposite of slowing down the form of the dynamics. Our findings suggest that by carrying out evolution experiments in both regimes (with and without clonal interference), one could potentially distinguish the different sources of macroscopic epistasis (fitness effect of mutations vs. change in fraction of beneficial mutations).


Genetics ◽  
2021 ◽  
Author(s):  
Arnaud Desbiez-Piat ◽  
Arnaud Le Rouzic ◽  
Maud I Tenaillon ◽  
Christine Dillmann

Abstract Population and quantitative genetic models provide useful approximations to predict long-term selection responses sustaining phenotypic shifts, and underlying multilocus adaptive dynamics. Valid across a broad range of parameters, their use for understanding the adaptive dynamics of small selfing populations undergoing strong selection intensity (thereafter High Drift-High selection regime, HDHS) remains to be explored. Saclay Divergent Selection Experiments (DSEs) on maize flowering time provide an interesting example of populations evolving under HDHS, with significant selection responses over 20 generations in two directions. We combined experimental data from Saclay DSEs, forward individual-based simulations, and theoretical predictions to dissect the evolutionary mechanisms at play in the observed selection responses. We asked two main questions: How do mutations arise, spread, and reach fixation in populations evolving under HDHS? How does the interplay between drift and selection influence observed phenotypic shifts? We showed that the long-lasting response to selection in small populations is due to the rapid fixation of mutations occurring during the generations of selection. Among fixed mutations, we also found a clear signal of enrichment for beneficial mutations revealing a limited cost of selection. Both environmental stochasticity and variation in selection coefficients likely contributed to exacerbate mutational effects, thereby facilitating selection grasp and fixation of small-effect mutations. Together our results highlight that despite a small number of polymorphic loci expected under HDHS, adaptive variation is continuously fueled by a vast mutational target. We discuss our results in the context of breeding and long-term survival of small selfing populations.


2021 ◽  
Vol 22 (13) ◽  
pp. 6815
Author(s):  
María Arribas ◽  
Ester Lázaro

Evolution of RNA bacteriophages of the family Leviviridae is governed by the high error rates of their RNA-dependent RNA polymerases. This fact, together with their large population sizes, leads to the generation of highly heterogeneous populations that adapt rapidly to most changes in the environment. Throughout adaptation, the different mutants that make up a viral population compete with each other in a non-trivial process in which their selective values change over time due to the generation of new mutations. In this work we have characterised the intra-population dynamics of a well-studied levivirus, Qβ, when it is propagated at a higher-than-optimal temperature. Our results show that adapting populations experienced rapid changes that involved the ascent of particular genotypes and the loss of some beneficial mutations of early generation. Artificially reconstructed populations, containing a fraction of the diversity present in actual populations, fixed mutations more rapidly, illustrating how population bottlenecks may guide the adaptive pathways. The conclusion is that, when the availability of beneficial mutations under a particular selective condition is elevated, the final outcome of adaptation depends more on the occasional occurrence of population bottlenecks and how mutations combine in genomes than on the selective value of particular mutations.


Genetics ◽  
2021 ◽  
Author(s):  
Parul Johri ◽  
Brian Charlesworth ◽  
Emma K Howell ◽  
Michael Lynch ◽  
Jeffrey D Jensen

Abstract It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites - both in the presence and absence of interference amongst deleterious mutations - and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.


2021 ◽  
Author(s):  
Tom R Booker ◽  
Benjamin C Jackson ◽  
Rory J Craig ◽  
Peter D. Keightley ◽  
Brian Charlesworth

To what extent do substitutions in protein-coding versus gene-regulatory regions contribute to fitness change over time? Answering this question requires estimates of the extent of selection acting on beneficial mutations in the two classes of sites. New mutations that have advantageous or deleterious fitness effects can induce selective sweeps and background selection, respectively, causing variation in the level of neutral genetic diversity along the genome. In this study, we analyse the profiles of genetic variability around protein-coding and regulatory elements in the genomes of wild mice to estimate the parameters of positive selection. We find patterns of diversity consistent with the effects of selection at linked sites, which are similar across mouse taxa, despite differences in effective population size and demographic history. By fitting a model that combines the effects of selective sweeps and background selection, we estimate the strength of positive selection and the frequency of advantageous mutations. We find that strong positive selection is required to explain variation in genetic diversity across the murid genome. In particular, we estimate that beneficial mutations in protein-coding regions have stronger effects on fitness than do mutations in gene-regulatory regions, but that mutations in gene-regulatory regions are more common. Overall though, our parameter estimates suggest that the cumulative fitness changes brought about by beneficial mutations in protein-coding may be greater than those in gene-regulatory elements.


2021 ◽  
Author(s):  
Peter Olofsson ◽  
Ricardo B. R. Azevedo

Evolutionary rescue is the process whereby a declining population may start growing again, thus avoiding extinction, via an increase in the frequency of beneficial genotypes. These genotypes may either already be present in the population in small numbers, or arise by mutation as the population declines. We present a simple two-type discrete-time branching process model and use it to obtain results such as the probability of rescue, the shape of the population growth curve of a rescued population, and the time until the first rescuing mutation occurs. Comparisons are made to existing results in the literature in cases where both the mutation rate and the selective advantage of the beneficial mutations are small.


2021 ◽  
Author(s):  
Gilbert Roberts ◽  
Marion Petrie

The evolution and widespread maintenance of sexual reproduction remains a conundrum in biology because asexual reproduction should allow twice the reproductive rate. One hypothesis is that sexual selection lessens the negative impact on fitness of accumulating deleterious mutations. However, for adaptation to occur, there must also be selection for beneficial mutations. Here we show that sexual selection can help explain the evolution and maintenance of sexual reproduction. In our model, females chose males with more beneficial mutations (as opposed to just fewer harmful ones) even when these occurred much more rarely. Sexual selection thereby increased fixation of beneficial mutations which increased the absolute genetic quality of sexual offspring. This increase in fitness relative to asexual offspring adds to the previously postulated effect of reduced mutation load in offsetting the cost of sex. Analysing our simulations reveals that female choice among males raised the fitness of reproducing males above that of females. We found that this effect could overcome the decline in average fitness that occurs when mutation rate increases, allowing an increase in the fixation of beneficial mutations. Sexual selection thereby not only facilitates the evolution of sexual reproduction but maintains sex by leveraging its benefits and driving adaptation.


Sign in / Sign up

Export Citation Format

Share Document