scholarly journals Development and Validation of a Novel Leishmania donovani Screening Cascade for High-Throughput Screening Using a Novel Axenic Assay with High Predictivity of Leishmanicidal Intracellular Activity

2015 ◽  
Vol 9 (9) ◽  
pp. e0004094 ◽  
Author(s):  
Andrea Nühs ◽  
Manu De Rycker ◽  
Sujatha Manthri ◽  
Eamon Comer ◽  
Christina A. Scherer ◽  
...  
2005 ◽  
Vol 49 (9) ◽  
pp. 3776-3783 ◽  
Author(s):  
Ashutosh ◽  
Suman Gupta ◽  
Ramesh ◽  
Shyam Sundar ◽  
Neena Goyal

ABSTRACT Currently available primary screens for the selection of candidate antileishmanial compounds are not ideal. These techniques are time-consuming, laborious, and difficult to scale and require macrophages, which limit their use for high-throughput screening. We have developed Leishmania donovani field isolates that constitutively express the firefly luciferase reporter gene (luc) as a part of an episomal vector. An excellent correlation between parasite number and luciferase activity was observed. luc expression was stable, even in the absence of drug selection, for 4 weeks. The transfectants were infective to macrophages, and intracellular amastigotes exhibited luciferase activity. The suitability of these recombinant field isolates for in vitro screening of antileishmanial drugs was established. The luciferase-expressing sodium stibogluconate-resistant cell lines offer a model for the screening of compounds for resistance. The system is in routine use at the Central Drug Research Institute, Lucknow, India, for high-throughput screening of newly synthesized compounds.


2014 ◽  
Vol 449 ◽  
pp. 188-194 ◽  
Author(s):  
Zhixiang Zhu ◽  
Jing Jin ◽  
Nina Xue ◽  
Xiuyun Song ◽  
Xiaoguang Chen

2019 ◽  
Vol 24 (5) ◽  
pp. 537-547
Author(s):  
Rachel H. Clare ◽  
Roger Clark ◽  
Catherine Bardelle ◽  
Paul Harper ◽  
Matthew Collier ◽  
...  

The Anti- Wolbachia (A·WOL) consortium at the Liverpool School of Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening (HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected tropical diseases (NTDs). The A·WOL consortium aims to identify novel macrofilaricidal drugs targeting the essential bacterial symbiont ( Wolbachia) of the filarial nematodes causing onchocerciasis and lymphatic filariasis. Working in collaboration, we have validated a robust high-throughput assay capable of identifying compounds that selectively kill Wolbachia over the host insect cell. We describe the development and validation process of this complex, phenotypic high-throughput assay and provide an overview of the primary outputs from screening the AstraZeneca library of 1.3 million compounds.


MethodsX ◽  
2020 ◽  
pp. 101207
Author(s):  
David Lamson ◽  
Mark Hughes ◽  
Audrey Adcock ◽  
Ginger Smith ◽  
Kevin P. Williams

2012 ◽  
Vol 17 (7) ◽  
pp. 993-998 ◽  
Author(s):  
Kris F. Sachsenmeier ◽  
Carl Hay ◽  
Erin Brand ◽  
Lori Clarke ◽  
Kim Rosenthal ◽  
...  

5′-Ectonucleotidase (NT5E) catalyzes the conversion of adenosine monophosphate to adenosine and free phosphate. The role of this ectonucleotidase and its production of adenosine are linked with immune function, angiogenesis, and cancer. NT5E activity is typically assayed either by chromatographic quantification of substrates and products using high-performance liquid chromatography (HPLC) or by quantification of free phosphate using malachite green. These methods are not suitable for robust screening assays of NT5E activity. HPLC is not readily suitable for the rapid and efficient assay of multiple samples and malachite green is highly sensitive to the phosphate-containing buffers common in various media and sample buffers. Here the development and validation of a novel high-throughput ectonucleotidase screening assay are described, which makes use of a luciferase-based assay reagent, the Promega CellTiter-Glo kit, to measure the catabolism of AMP by NT5E. This multiwell plate-based assay facilitates the screening of potential ectonucleotidase antagonists and is unaffected by the presence of contaminating phosphate molecules present in screening samples.


Sign in / Sign up

Export Citation Format

Share Document