scholarly journals A Codimension-2 Bifurcation Controlling Endogenous Bursting Activity and Pulse-Triggered Responses of a Neuron Model

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85451 ◽  
Author(s):  
William H. Barnett ◽  
Gennady S. Cymbalyuk
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyu Hu ◽  
Chongxin Liu

Bursting is an important firing activity of neurons, which is caused by a slow process that modulates fast spiking activity. Based on the original second-order Morris-Lecar neuron model, an improved third-order Morris-Lecar neuron model can produce bursting activity is proposed, in which the effect of electromagnetic radiation is considered as a slow process and the original equation of Morris-Lecar neuron model as a fast process. Extensive numerical simulation results show that the improved neuron model can produce different types of bursting, and bursting activity shows a deep dependence on system parameters and electromagnetic radiation parameters. In addition, synchronization transitions of identical as well as no-identical coupled third-order Morris-Lecar neurons are studied, the results show that identical coupled neurons experience a complex synchronization process and reach complete synchronization finally with the increase of coupling intensity. For no-identical coupled neurons, only anti-phase synchronization and in-phase synchronization can be reached. The studies of bursting activity of single neuron and synchronization transition of coupled neurons have important guiding significance for further understanding the information processing of neurons and collective behaviors in neuronal network under electromagnetic radiation environment.


2016 ◽  
Vol 136 (10) ◽  
pp. 1424-1430 ◽  
Author(s):  
Yoshiki Sasaki ◽  
Katsutoshi Saeki ◽  
Yoshifumi Sekine

2002 ◽  
Vol 13 (10) ◽  
pp. 409-410 ◽  
Author(s):  
Martin J Kelly ◽  
Edward J Wagner

2021 ◽  
Vol 22 (11) ◽  
pp. 5645
Author(s):  
Stefano Morotti ◽  
Haibo Ni ◽  
Colin H. Peters ◽  
Christian Rickert ◽  
Ameneh Asgari-Targhi ◽  
...  

Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.


Author(s):  
Serkan Kiranyaz ◽  
Junaid Malik ◽  
Habib Ben Abdallah ◽  
Turker Ince ◽  
Alexandros Iosifidis ◽  
...  

AbstractThe recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. However, the default search method to find optimal operators in ONNs, the so-called Greedy Iterative Search (GIS) method, usually takes several training sessions to find a single operator set per layer. This is not only computationally demanding, also the network heterogeneity is limited since the same set of operators will then be used for all neurons in each layer. To address this deficiency and exploit a superior level of heterogeneity, in this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the “Synaptic Plasticity” paradigm that poses the essential learning theory in biological neurons. During training, each operator set in the library can be evaluated by their synaptic plasticity level, ranked from the worst to the best, and an “elite” ONN can then be configured using the top-ranked operator sets found at each hidden layer. Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs and as a result, the performance gap over the CNNs further widens.


Sign in / Sign up

Export Citation Format

Share Document