GnRH neurons and episodic bursting activity

2002 ◽  
Vol 13 (10) ◽  
pp. 409-410 ◽  
Author(s):  
Martin J Kelly ◽  
Edward J Wagner
Endocrinology ◽  
2007 ◽  
Vol 149 (2) ◽  
pp. 587-596 ◽  
Author(s):  
Jérôme Clasadonte ◽  
Pierre Poulain ◽  
Jean-Claude Beauvillain ◽  
Vincent Prevot

The activation of nitric oxide (NO) signaling pathways in hypothalamic neurons plays a key role in the control of GnRH secretion that is central to reproductive function. It is unknown whether NO directly modulates the firing behavior of GnRH neurons in the preoptic region of the mature brain. Using patch-clamp recordings from GnRH neurons expressing green fluorescent protein in adult mice brain slices, we demonstrate that the NO precursor, l-arginine (Arg), or the NO donor, diethylamine/NO, induced a robust and reversible reduction in the spontaneous firing activity of GnRH neurons, including bursting activity. The effects of l-Arg were prevented by the NO synthase inhibitor Nω-nitro-l-Arg methyl ester hydrochloride. Histochemical studies revealing a close anatomical relationship between neurons producing NO and GnRH perikarya, together with the loss of the l-Arg-mediated inhibition of GnRH neuronal activity via the selective blockade of neuronal NO synthase, suggested that the primary source of local NO production in the mouse preoptic region was neuronal. Synaptic transmission uncoupling did not alter the effect of NO, suggesting that NO affects the firing pattern of GnRH neurons by acting at a postsynaptic site. We also show that the NO-mediated changes in membrane properties in the GnRH neurons require soluble guanylyl cyclase activity and may involve potassium conductance. By revealing that NO is a direct modulator of GnRH neuronal activity, our results introduce the intriguing possibility that this gaseous neurotransmitter may be used by the sexual brain to modulate burst firing patterns. It may set into phase the bursting activity of GnRH neurons at key stages of reproductive physiology.


2021 ◽  
Vol 22 (11) ◽  
pp. 5645
Author(s):  
Stefano Morotti ◽  
Haibo Ni ◽  
Colin H. Peters ◽  
Christian Rickert ◽  
Ameneh Asgari-Targhi ◽  
...  

Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.


2010 ◽  
Vol 1364 ◽  
pp. 25-34 ◽  
Author(s):  
Oline K. Rønnekleiv ◽  
Martha A. Bosch ◽  
Chunguang Zhang
Keyword(s):  

Author(s):  
Tamás Wilheim ◽  
Krisztina Nagy ◽  
Mahendravarman Mohanraj ◽  
Kamil Ziarniak ◽  
Masahiko Watanabe ◽  
...  

AbstractThe endocannabinoids have been shown to target the afferents of hypothalamic neurons via cannabinoid 1 receptor (CB1) and thereby to influence their excitability at various physiological and/or pathological processes. Kisspeptin (KP) neurons form afferents of multiple neuroendocrine cells and influence their activity via signaling through a variation of co-expressed classical neurotransmitters and neuropeptides. The differential potency of endocannabinoids to influence the release of classical transmitters or neuropeptides, and the ovarian cycle-dependent functioning of the endocannabinoid signaling in the gonadotropin-releasing hormone (GnRH) neurons initiated us to study whether (a) the different subpopulations of KP neurons express CB1 mRNAs, (b) the expression is influenced by estrogen, and (c) CB1-immunoreactivity is present in the KP afferents to GnRH neurons. The aim of the study was to investigate the site- and cell-specific expression of CB1 in female mice using multiple labeling in situ hybridization and immunofluorescent histochemical techniques. The results support that CB1 mRNAs are expressed by both the GABAergic and glutamatergic subpopulations of KP neurons, the receptor protein is detectable in two-thirds of the KP afferents to GnRH neurons, and the expression of CB1 mRNA shows an estrogen-dependency. The applied estrogen-treatment, known to induce proestrus, reduced the level of CB1 transcripts in the rostral periventricular area of the third ventricle and arcuate nucleus, and differently influenced its co-localization with vesicular GABA transporter or vesicular glutamate transporter-2 in KP neurons. This indicates a gonadal cycle-dependent role of endocannabinoid signaling in the neuronal circuits involving KP neurons.


Sign in / Sign up

Export Citation Format

Share Document