scholarly journals Deletion of the Complement C5a Receptor Alleviates the Severity of Acute Pneumococcal Otitis Media following Influenza A Virus Infection in Mice

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e95160 ◽  
Author(s):  
Hua Hua Tong ◽  
Garrett Lambert ◽  
Yong Xing Li ◽  
Joshua M. Thurman ◽  
Gregory L. Stahl ◽  
...  
2002 ◽  
Vol 70 (8) ◽  
pp. 4292-4301 ◽  
Author(s):  
H. H. Tong ◽  
I. Grants ◽  
X. Liu ◽  
T. F. DeMaria

ABSTRACT Experimental and clinical studies suggest that influenza A virus promotes Streptococcus pneumoniae-induced otitis media; however, the mechanism underlying this synergistic interaction has not been completely defined. In this study, glycoconjugate expression patterns were evaluated on the cell surface in the chinchilla eustachian tube (ET) lumen of a cohort challenged intranasally (i.n.) with S. pneumoniae type 6A, which is predominantly transparent and a cohort with an antecedent influenza A virus infection, followed by i.n. inoculation with S. pneumoniae. The labeling patterns obtained with six lectin probes revealed that the binding of Bandeiraea simplicifolia lectin II, succinylated wheat germ agglutinin, and peanut agglutinin were significantly increased in the lumenal surface of the ET in the cohort infected with both pathogens compared to the cohort inoculated with only S. pneumoniae, which indicated that N-acetylglucosamine (GlcNAc) and d-galactose residues were exposed. A significant decreased labeling with Sambucus nigra agglutinin in the combined influenza A virus and pneumococcus infection cohort suggested that there were few sialic acid residues remaining in the ET epithelium. In addition, the colonial opacity of S. pneumoniae during the disease course was examined. The opaque phenotype was predominant among the pneumococcus isolates from the middle-ear fluid in the cohort infected with the both pathogens. Together, these data suggest that the synergic effect of influenza A virus and S. pneumoniae on the changes of the carbohydrate moieties in the ET epithelium and that the selection of the opaque variant may facilitate the pneumococcal invasion of the middle ear.


2001 ◽  
Vol 69 (1) ◽  
pp. 602-606 ◽  
Author(s):  
H. H. Tong ◽  
J. N. Weiser ◽  
M. A. James ◽  
T. F. DeMaria

ABSTRACT Phase variation in the colonial opacity of Streptococcus pneumoniae has been implicated as a factor in bacterial adherence, colonization, and invasion in the pathogenesis of pneumococcal disease. Additionally, the synergistic effects of influenza A virus and S. pneumoniae in the development of otitis media (OM) have been reported. This study examined the ability of opaque or transparent S. pneumoniae from the same strain in combination with an antecedent influenza A virus infection to colonize the nasopharynx and invade the middle ear in the chinchilla model. Our data indicated that there was no significant difference in the level of nasopharyngeal colonization and induction of OM between the opaque and transparent variants unless there was a prior challenge with influenza A virus. Subsequent to influenza A virus infection, there was a significant difference between the variants in the ability to colonize and persist in the nasopharynx and middle ear. The concentrations of the opaque variant in nasopharyngeal-lavage samples and middle-ear fluid remained consistently higher than those of the transparent variant for 10 days postinoculation. Data from this study indicate that the effects of influenza A virus on the pathogenesis of experimental S. pneumoniae-induced OM differ depending on the opacity phenotype involved.


Cell Reports ◽  
2021 ◽  
Vol 35 (7) ◽  
pp. 109159
Author(s):  
Xiaoyuan Bai ◽  
Wenxian Yang ◽  
Xiaohan Luan ◽  
Huizi Li ◽  
Heqiao Li ◽  
...  

2007 ◽  
Vol 88 (10) ◽  
pp. 2627-2635 ◽  
Author(s):  
Alexey A. Matskevich ◽  
Karin Moelling

In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-α and IFN-β genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.


2012 ◽  
Vol 206 (4) ◽  
pp. 495-503 ◽  
Author(s):  
Jie Zhou ◽  
Kelvin Kai-Wang To ◽  
Hui Dong ◽  
Zhong-Shan Cheng ◽  
Candy Choi-Yi Lau ◽  
...  

Virulence ◽  
2012 ◽  
Vol 3 (7) ◽  
pp. 603-608 ◽  
Author(s):  
Jason Waithman ◽  
Justine D. Mintern

Sign in / Sign up

Export Citation Format

Share Document