scholarly journals Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142924 ◽  
Author(s):  
Anthony A. Portale ◽  
Martin Y. H. Zhang ◽  
Valentin David ◽  
Aline Martin ◽  
Yan Jiao ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vidya Chandrasekaran ◽  
Giada Carta ◽  
Daniel da Costa Pereira ◽  
Rajinder Gupta ◽  
Cormac Murphy ◽  
...  

AbstractThe renal proximal tubule is responsible for re-absorption of the majority of the glomerular filtrate and its proper function is necessary for whole-body homeostasis. Aging, certain diseases and chemical-induced toxicity are factors that contribute to proximal tubule injury and chronic kidney disease progression. To better understand these processes, it would be advantageous to generate renal tissues from human induced pluripotent stem cells (iPSC). Here, we report the differentiation and characterization of iPSC lines into proximal tubular-like cells (PTL). The protocol is a step wise exposure of small molecules and growth factors, including the GSK3 inhibitor (CHIR99021), the retinoic acid receptor activator (TTNPB), FGF9 and EGF, to drive iPSC to PTL via cell stages representing characteristics of early stages of renal development. Genome-wide RNA sequencing showed that PTL clustered within a kidney phenotype. PTL expressed proximal tubular-specific markers, including megalin (LRP2), showed a polarized phenotype, and were responsive to parathyroid hormone. PTL could take up albumin and exhibited ABCB1 transport activity. The phenotype was stable for up to 7 days and was maintained after passaging. This protocol will form the basis of an optimized strategy for molecular investigations using iPSC derived PTL.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Marta Figueiredo ◽  
Gabin Sihn ◽  
Dominik Müller ◽  
Genevieve Nguyen ◽  
Michael Bader ◽  
...  

Author(s):  
J. M. Barrett ◽  
P. M. Heidger

Microbodies have received extensive morphological and cytochemical investigation since they were first described by Rhodin in 1954. To our knowledge, however, all investigations of microbodies and cytoplasmic bodies of rat renal proximal tubule cells have employed immersion fixation. Tisher, et al. have shown convincing evidence of fine structural alteration of microbodies in rhesus monkey kidney following immersion fixation; these alterations were not encountered when in vivo intravascular perfusion was employed. In view of these studies, and the fact that techniques for perfusion fixation have been established specifically for the rat kidney by Maunsbach, it seemed desirable to employ perfusion fixation to study the fine structure and distribution of microbodies and cytoplasmic bodies within the rat renal proximal tubule.


Sign in / Sign up

Export Citation Format

Share Document