scholarly journals Characterization of Atp6ap2 ((Pro)‐Renin Receptor) in Receptor Mediated Endocytosis by the Renal Proximal Tubule

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Marta Figueiredo ◽  
Gabin Sihn ◽  
Dominik Müller ◽  
Genevieve Nguyen ◽  
Michael Bader ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vidya Chandrasekaran ◽  
Giada Carta ◽  
Daniel da Costa Pereira ◽  
Rajinder Gupta ◽  
Cormac Murphy ◽  
...  

AbstractThe renal proximal tubule is responsible for re-absorption of the majority of the glomerular filtrate and its proper function is necessary for whole-body homeostasis. Aging, certain diseases and chemical-induced toxicity are factors that contribute to proximal tubule injury and chronic kidney disease progression. To better understand these processes, it would be advantageous to generate renal tissues from human induced pluripotent stem cells (iPSC). Here, we report the differentiation and characterization of iPSC lines into proximal tubular-like cells (PTL). The protocol is a step wise exposure of small molecules and growth factors, including the GSK3 inhibitor (CHIR99021), the retinoic acid receptor activator (TTNPB), FGF9 and EGF, to drive iPSC to PTL via cell stages representing characteristics of early stages of renal development. Genome-wide RNA sequencing showed that PTL clustered within a kidney phenotype. PTL expressed proximal tubular-specific markers, including megalin (LRP2), showed a polarized phenotype, and were responsive to parathyroid hormone. PTL could take up albumin and exhibited ABCB1 transport activity. The phenotype was stable for up to 7 days and was maintained after passaging. This protocol will form the basis of an optimized strategy for molecular investigations using iPSC derived PTL.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142924 ◽  
Author(s):  
Anthony A. Portale ◽  
Martin Y. H. Zhang ◽  
Valentin David ◽  
Aline Martin ◽  
Yan Jiao ◽  
...  

2009 ◽  
Vol 458 (6) ◽  
pp. 1039-1048 ◽  
Author(s):  
Erik Ilsø Christensen ◽  
Pierre J. Verroust ◽  
Rikke Nielsen

Development ◽  
2021 ◽  
Author(s):  
Alexandra Atienza-Manuel ◽  
Vicente Castillo-Mancho ◽  
Stefano De Renzis ◽  
Joaquim Culi ◽  
Mar Ruiz-Gómez

The vertebrate endocytic receptor CUBAM, consisting of three cubilin monomers complexed with a single amnionless molecule, plays a major role in protein reabsorption in the renal proximal tubule. Here, we show that Drosophila CUBAM is a tripartite complex composed of dAmnionless and two cubilin paralogues Cubilin and Cubilin-2, and that it is required for nephrocyte slit diaphragm (SD) dynamics. Loss of CUBAM-mediated endocytosis induces dramatic morphological changes in nephrocytes and promotes enlarged ingressions of the external membrane and SD mislocalisation. These phenotypes result in part from an imbalance between endocytosis, strongly impaired in CUBAM mutants, and exocytosis in these highly active cells. Noteworthy, rescuing receptor-mediated endocytosis by Megalin/LRP2 or Rab5 expression only partially restores SD-positioning in CUBAM mutants, suggesting a specific requirement of CUBAM in SD degradation and/or recycling. This finding and the reported expression of CUBAM in podocytes argue for a possible unexpected conserved role of this endocytic receptor in vertebrate SD remodelling.


Sign in / Sign up

Export Citation Format

Share Document