scholarly journals The Synergistic Local Immunosuppressive Effects of Neural Stem Cells Expressing Indoleamine 2,3-Dioxygenase (IDO) in an Experimental Autoimmune Encephalomyelitis (EAE) Animal Model

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144298 ◽  
Author(s):  
Young Eun Lee ◽  
Jaeyeol An ◽  
Kee-Hang Lee ◽  
Sung Su Kim ◽  
Hye Jin Song ◽  
...  
2021 ◽  
Author(s):  
Christina Brown ◽  
Christina McKee ◽  
Sophia Halassy ◽  
Suleiman Kojan ◽  
Douglas Feinstein ◽  
...  

Abstract Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. Currently used treatment drugs have side effects and only address the symptoms but not the causes of MS. In this study, a novel approach of transplanting neural stem cells (NSCs) derived from human primitive mesenchymal stem cells (MSCs) was investigated in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Methods Primitive MSCs were differentiated into NSCs using selective media. The cells were labeled with PKH26 and injected into the tail vein of EAE mice. The animals were evaluated for changes in neurobehavior and weight twice daily. Two weeks following cell transplantation, the animals were sacrificed to collect the blood, lymphatic and CNS tissues for analysis. FACS analysis was used to track labeled cells and infiltrates. Histochemical analysis was performed to determine the levels of myelination. Expression of inflammation, neural, astrogliosis, neuroprotection, and myelination markers was investigated by using immunohistochemical and qRT-PCR analyses. Results Neurobehavioral assays showed that EAE disease process was halted by transplantation of both MSCs and NSCs. However, NSCs showed greater efficacy in reversing the disease symptoms, which resulted in near complete recovery of EAE animals. Post-transplantation analyses also showed homing of transplanted cells into the CNS with concomitant induction of anti-inflammatory response resulting in reduction of immune infiltrates. Luxol fast blue staining intensity of CNS tissues was significantly improved in treated mice as compared to EAE animals, suggesting endogenous remyelination. NSC transplantation also modulated Treg and Th17 cells in EAE mice to levels comparable to healthy controls. In addition, several of the markers associated with neuroprotection (i.e. Igf, Bdnf, and Trkb), myelination (i.e. Erk2, Krox-20, Oct-6, Mpz, Mbp, and Mog) and neurogenesis (i.e. Tuj1 and Nestin) were upregulated, suggesting endogenous regeneration in treated animals. Conclusions Cell transplantation was more effective at an earlier point of EAE disease (EAE stage 1) than later (EAE stage 2). These promising results provide basis for large-scale clinical studies to treat MS using NSCs derived from primitive MSCs.


2021 ◽  
Vol 135 (9) ◽  
pp. 1065-1082
Author(s):  
Carolina Manganeli Polonio ◽  
Carla Longo de Freitas ◽  
Marília Garcia de Oliveira ◽  
Cristiano Rossato ◽  
Wesley Nogueira Brandão ◽  
...  

Abstract Cellular therapy with mesenchymal stem cells (MSCs) is a huge challenge for scientists, as little translational relevance has been achieved. However, many studies using MSCs have proved their suppressive and regenerative capacity. Thus, there is still a need for a better understanding of MSCs biology and the establishment of newer protocols, or to test unexplored tissue sources. Here, we demonstrate that murine endometrial-derived MSCs (meMSCs) suppress Experimental Autoimmune Encephalomyelitis (EAE). MSC-treated animals had milder disease, with a significant reduction in Th1 and Th17 lymphocytes in the lymph nodes and in the central nervous system (CNS). This was associated with increased Il27 and Cyp1a1 expression, and presence of IL-10-secreting T CD4+ cells. At EAE peak, animals had reduced CNS infiltrating cells, histopathology and demyelination. qPCR analysis evidenced the down-regulation of several pro-inflammatory genes and up-regulation of indoleamine-2,3-dioxygenase (IDO). Consistently, co-culturing of WT and IDO−/− meMSCs with T CD4+ cells evidenced the necessity of IDO on the suppression of encephalitogenic lymphocytes, and IDO−/− meMSCs were not able to suppress EAE. In addition, WT meMSCs stimulated with IL-17A and IFN-γ increased IDO expression and secretion of kynurenines in vitro, indicating a negative feedback loop. Pathogenic cytokines were increased when CD4+ T cells from AhR−/− mice were co-cultured with WT meMSC. In summary, our research evidences the suppressive activity of the unexplored meMSCs population, and shows the mechanism depends on IDO-kynurenines-Aryl hydrocarbon receptor (AhR) axis. To our knowledge this is the first report evidencing that the therapeutic potential of meMSCs relying on IDO expression.


Sign in / Sign up

Export Citation Format

Share Document