scholarly journals Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146528 ◽  
Author(s):  
Mo-Zhu Wang ◽  
Zheng-Yuan Liu ◽  
Fang-Li Luo ◽  
Guang-Chun Lei ◽  
Hong-Li Li
Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2590
Author(s):  
Qisheng Li ◽  
Yanqing Han ◽  
Kunquan Chen ◽  
Xiaolong Huang ◽  
Kuanyi Li ◽  
...  

Water level is one of the most important factors affecting the growth of submerged macrophytes in aquatic ecosystems. The rosette plant Vallisneria natans and the erect plant Hydrilla verticillata are two common submerged macrophytes in lakes of the middle and lower reaches of the Yangtze River, China. How water level fluctuations affect their growth and competition is still unknown. In this study, three water depths (50 cm, 150 cm, and 250 cm) were established to explore the responses in growth and competitive patterns of the two plant species to water depth under mixed planting conditions. The results show that, compared with shallow water conditions (50 cm), the growth of both submerged macrophytes was severely suppressed in deep water depth (250 cm), while only V. natans was inhibited under intermediate water depth (150 cm). Moreover, the ratio of biomass of V. natans to H. verticillata gradually increased with increasing water depth, indicating that deep water enhanced the competitive advantage of V. natans over H.verticillata. Morphological adaptation of the two submerged macrophytes to water depth was different. With increasing water depth, H. verticillata increased its height, at the cost of reduced plant numbers to adapt to poor light conditions. A similar strategy was also observed in V. natans, when water depth increased from 50 cm to 150 cm. However, both the plant height and number were reduced at deep water depth (250 cm). Our study suggests that water level reduction in lake restoration efforts could increase the total biomass of submerged macrophytes, but the domination of key plants, such as V. natans, may decrease.


2012 ◽  
Vol 23 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Simone Casali ◽  
Maria do Carmo Calijuri ◽  
Bernard Barbarisi ◽  
Vivian Fróes Renó ◽  
Adriana Gomes Affonso ◽  
...  

AIM: This paper examines the effect of the extreme water level change in 2009 on the structure and diversity of the phytoplankton communities in lakes of the Lower Amazon Floodplain, and compares it to phytoplankton community structure data reported in the literature for 2002 and 2003 high water periods, closer to the normal hydrological conditions. METHODS: Sub-surface integrated water samples for phytoplankton and chlorophyll-a analyses were collected during high and low water phases in 2009. Water temperature (°C), pH, turbidity (NTU) and electrical conductivity (µS.m-1) were measured, and the Shannon diversity index was calculated. RESULTS: The results showed striking differences in taxonomic composition between phases (high and low) and also between normal (2002 and 2003) and extreme (2009) hydrological conditions, all related to the flood pulse intensity. CONCLUSIONS: Extreme water level fluctuations can result in shifts in phytoplankton community structure and diversity. This work represents a valuable contribution to phytoplankton research since presents the community structure under extreme hydrological events in the Amazon floodplain.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2900
Author(s):  
Fengbin Zhao ◽  
Xin Fang ◽  
Zeyu Zhao ◽  
Xiaoli Chai

Water level fluctuation (WLF) has a significant effect on aquatic macrophytes, but few experimental studies have examined the effect of WLF on submerged community succession, especially from a large-scale perspective. In this study, field monitoring of WLF and submerged macrophytes was conducted in Yilong Lake (SE China) over two years, and the impacts of WLF on the growth characteristics and the community structure of submerged macrophytes were determined. The results show that the biomass of submerged macrophytes decreased significantly after the water level increased and submerged macrophytes could cope with the adverse environment by adjusting their growth posture, for example, increasing plant length and reducing branch number. However, different submerged plants have different regulatory abilities, which leads to a change in the community structure. Myriophyllum spicatum, Stuckenia pectinata, and Najas marina had better adaptation abilities to WLF than Najas minor and Utricularia vulgaris. Changes in water depth, dissolved oxygen, and transparency significantly contribute to the effect of WLF on submerged plant communities. Therefore, when determining the range of WLF, the above three critical factors and submerged plant species should be considered. WLF changed the spatial distribution of the aquatic plant community. When water levels rose, the density of the submerged macrophyte community in the original growth region reduced as the emergent plants migrated to shallower water, and the seed bank germination was aided by transparent water produced among emergent plants. This can be used as a pioneering measure to restore submerged plants in eutrophic lakes with low transparency. In addition, a suitable water depth created by WLF was conducive to activating the seed bank and improving the diversity of aquatic plants. Finally, a distribution map of aquatic plants in Yilong Lake is drawn.


2011 ◽  
Vol 68 (10) ◽  
pp. 1695-1704 ◽  
Author(s):  
Michael S. White ◽  
Marguerite A. Xenopoulos ◽  
Robert A. Metcalfe ◽  
Keith M. Somers

We investigated the role of water level fluctuation on benthic macroinvertebrate communities of stony littoral habitats located in the Boreal Shield Ecozone. Using the reference condition approach (RCA), regression analysis, nonmetric multidimensional scaling (NMDS), and analysis of variance (ANOVA), we analyzed the benthic macroinvertebrate community structure of 20 natural lakes and 28 hydroelectric reservoirs to determine if they are structured by change in water level (amplitude). Along a gradient of amplitude intensity, we found that taxa richness decreases with increasing amplitude (r2 = 0.47–0.60). Littoral benthic macroinvertebrate community structure is significantly different in reservoirs that experience amplitudes > 2.0 m. Out of 28 reservoirs, 13 fell outside the 95.5% confidence ellipse determined by 20 reference lakes. Functional mobility group and functional feeding group composition are also altered with increasing amplitude (nonparametric ANOVA, P < 0.05). Further, a change in benthic macroinvertebrate functional composition occurs after a change in taxa richness. Interestingly, reservoirs that experienced amplitudes < 2.0 m had benthic macroinvertebrate communities whose structural and functional composition is similar to lakes experiencing natural water level fluctuations.


2019 ◽  
Author(s):  
Beijuan Hu ◽  
Xuren Hu ◽  
Xue Nie ◽  
Xiaoke Zhang ◽  
Naicheng Wu ◽  
...  

Shallow lakes are important for the maintenance of Lake Poyang ecosystem integrity, and zooplankton play an important role in its substance and energy flow. We investigated zooplankton in spring (April), summer (July), autumn (October) and winter (January of the following year) from 2012 to 2016 in a sub-lake of Lake Poyang with seasonal water level fluctuations. The study aims to understand their seasonal dynamics and interannual variation of zooplankton community in relation to environmental variables. A total of 115 species were identified in all samples of the 4 years, comprising 87 Rotifera, 13 Cladocera and 15 Copepoda. Rotifera was the dominant group in quantity and its species richness and abundance were significantly higher than Cladocera and Copepoda (P<0.05, by ANOVA), while Cladocera dominated in biomass. Species richness of Rotifera showed a significant seasonal difference (P<0.05 by ANOVA). The clear decline of zooplankton species richness in spring was mainly due to the dramatic decrease of Rotifera species. Furthermore, both density and biomass of zooplankton showed significant seasonal differences (P<0.05). Generally, the density and biomass of zooplankton were higher in summer and autumn than in winter and spring. Biodiversity indices e.g., Shannon-Wiener index and evenness were dramatically lower in spring than in other seasons. Non-metric multidimensional scaling (NMDS) analysis suggested that the zooplankton communities can be divided into three groups: spring community, summer–autumn community and winter community associated with distinct indicator species. The results of species richness and community analysis showed that the seasonal succession of zooplankton communities did not have interannual reproducibility. Redundancy analysis revealed that water temperature (WT), conductivity, pH and dissolved oxygen (DO) had significant effects on the zooplankton community. In addition, water level fluctuations, disturbance by wintering waterbirds and artificial water level control during dry season have potential effects on zooplankton community structure too. This study is helpful to further understand the ecosystem stability of lake connected with rivers and provide scientific guidance for protection of lake wetlands.


Sign in / Sign up

Export Citation Format

Share Document