scholarly journals Effectiveness of beta-blockers depending on the genotype of congenital long-QT syndrome: A meta-analysis

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0185680 ◽  
Author(s):  
Jinhee Ahn ◽  
Hyun Jung Kim ◽  
Jong-Il Choi ◽  
Kwang No Lee ◽  
Jaemin Shim ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Lu Han ◽  
Fuxiang Liu ◽  
Qing Li ◽  
Tao Qing ◽  
Zhenyu Zhai ◽  
...  

Long QT syndrome (LQTS) is an arrhythmic heart disease caused by congenital genetic mutations, and results in increased occurrence rates of polymorphic ventricular tachyarrhythmias and sudden cardiac death (SCD). Clinical evidence from numerous previous studies suggested that beta blockers (BBs), including atenolol, propranolol, metoprolol, and nadolol, exhibit different efficacies for reducing the risk of cardiac events (CEs), such as syncope, arrest cardiac arrest (ACA), and SCD, in patients with LQTS. In this study, we identified relevant studies in MEDLINE, PubMed, embase, and Cochrane databases and performed a meta-analysis to assess the relationship between the rate of CEs and LQTS individuals with confounding variables, including different gender, age, and QTc intervals. Moreover, a network meta-analysis was not only established to evaluate the effectiveness of different BBs, but also to provide the ranked efficacies of BBs treatment for preventing the recurrence of CEs in LQT1 and LQT2 patients. In conclusion, nadolol was recommended as a relatively effective strategy for LQT2 in order to improve the prognosis of patients during a long follow-up period.


2018 ◽  
Vol 51 (3) ◽  
pp. 396-401 ◽  
Author(s):  
Gary Tse ◽  
Mengqi Gong ◽  
Lei Meng ◽  
Cheuk Wai Wong ◽  
Stamatis Georgopoulos ◽  
...  

2021 ◽  
Vol 17 (3) ◽  
pp. 492-497
Author(s):  
A. Yu. Proshlyakov ◽  
P. Sh. Chomakhidze ◽  
N. A. Novikova

Congenital long QT syndrome is a pathology that requires special attention and knowledge about the safety and effectiveness of various medications. Prolongation of the QT interval due to congenital or acquired causes is an important factor in the development of an unfavorable life forecast with the formation of an elongated QT syndrome. With an unfavorable course, patients suffer from loss of consciousness, episodes of tachycardia. Often, stable polymorphic ventricular tachycardia develops. The risk of sudden cardiac death in this pathology can vary from 0.33% to 5%. In people who have suffered an episode of cardiac arrest, and do not have a permanent prescribed antiarrhythmic therapy, the mortality rate reaches 50% within 15 years. Preventive administration of antiarrhythmic drugs is not always effective. A positive result of treatment depends on the severity of long QT syndrome and its genotype. Beta-blockers are often prescribed to patients of different ages with various cardiac pathologies, including for the prevention of arrhythmia in long QT syndrome. Beta-blockers differ in various pharmacokinetic and pharmacodynamic parameters (lipophilicity/hydrophilicity, selectivity, presence/absence of internal sympathomimetic activity), which, along with the variant of the disease genotype, can affect their effectiveness and safety in the considered pathology. This review article presents the results of major studies on the safety and effectiveness of different groups of beta blockers in various variants of long QT syndrome. The preferred beta-blockers for various genotypes of the syndrome were determined, and a comparative characteristic of beta-blockers for their safety and preventive effectiveness was given.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Hyun Sok Yoo ◽  
Nancy Medina ◽  
María Alejandra von Wulffen ◽  
Natalia Ciampi ◽  
Analia Paolucci ◽  
...  

Abstract Background The congenital long QT syndrome type 2 is caused by mutations in KCNH2 gene that encodes the alpha subunit of potassium channel Kv11.1. The carriers of the pathogenic variant of KCNH2 gene manifest a phenotype characterized by prolongation of QT interval and increased risk of sudden cardiac death due to life-threatening ventricular tachyarrhythmias. Results A family composed of 17 members with a family history of sudden death and recurrent syncopes was studied. The DNA of proband with clinical manifestations of long QT syndrome was analyzed using a massive DNA sequencer that included the following genes: KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, ANK2, KCNJ2, CACNA1, CAV3, SCN1B, SCN4B, AKAP9, SNTA1, CALM1, KCNJ5, RYR2 and TRDN. DNA sequencing of proband identified a novel pathogenic variant of KCNH2 gene produced by a heterozygous frameshift mutation c.46delG, pAsp16Thrfs*44 resulting in the synthesis of a truncated alpha subunit of the Kv11.1 ion channel. Eight family members manifested the phenotype of long QT syndrome. The study of family segregation using Sanger sequencing revealed the identical variant in several members of the family with a positive phenotype. Conclusions The clinical and genetic findings of this family demonstrate that the novel frameshift mutation causing haploinsufficiency can result in a congenital long QT syndrome with a severe phenotypic manifestation and an elevated risk of sudden cardiac death.


Sign in / Sign up

Export Citation Format

Share Document