scholarly journals Correction: Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes)

PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0217959 ◽  
Author(s):  
Hussam Zaher ◽  
Robert W. Murphy ◽  
Juan Camilo Arredondo ◽  
Roberta Graboski ◽  
Paulo Roberto Machado-Filho ◽  
...  
PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0216148 ◽  
Author(s):  
Hussam Zaher ◽  
Robert W. Murphy ◽  
Juan Camilo Arredondo ◽  
Roberta Graboski ◽  
Paulo Roberto Machado-Filho ◽  
...  

2020 ◽  
Author(s):  
Tom Carruthers ◽  
Robert W Scotland

Abstract Understanding and representing uncertainty is crucial in academic research, because it enables studies to build on the conclusions of previous studies, leading to robust advances in a particular field. Here, we evaluate the nature of uncertainty and the manner by which it is represented in divergence time estimation, a field that is fundamental to many aspects of macroevolutionary research, and where there is evidence that uncertainty has been seriously underestimated. We address this issue in the context of methods used in divergence time estimation, and with respect to the manner by which time-calibrated phylogenies are interpreted. With respect to methods, we discuss how the assumptions underlying different methods may not adequately reflect uncertainty about molecular evolution, the fossil record, or diversification rates. Therefore, divergence time estimates may not adequately reflect uncertainty, and may be directly contradicted by subsequent findings. For the interpretation of time-calibrated phylogenies, we discuss how the use of time-calibrated phylogenies for reconstructing general evolutionary timescales leads to inferences about macroevolution that are highly sensitive to methodological limitations in how uncertainty is accounted for. By contrast, we discuss how the use of time-calibrated phylogenies to test specific hypotheses leads to inferences about macroevolution that are less sensitive to methodological limitations. Given that many biologists wish to use time-calibrated phylogenies to reconstruct general evolutionary timescales, we conclude that the development of methods of divergence time estimation that adequately account for uncertainty is necessary.


2017 ◽  
Author(s):  
Joseph W. Brown ◽  
Stephen A. Smith

AbstractDivergence time estimation — the calibration of a phylogeny to geological time — is an integral first step in modelling the tempo of biological evolution (traits and lineages). However, despite increasingly sophisticated methods to infer divergence times from molecular genetic sequences, the estimated age of many nodes across the tree of life contrast significantly and consistently with timeframes conveyed by the fossil record. This is perhaps best exemplified by crown angiosperms, where molecular clock (Triassic) estimates predate the oldest (Early Cretaceous) undisputed angiosperm fossils by tens of millions of years or more. While the incompleteness of the fossil record is a common concern, issues of data limitation and model inadequacy are viable (if underexplored) alternative explanations. In this vein, Beaulieu et al. (2015) convincingly demonstrated how methods of divergence time inference can be misled by both (i) extreme state-dependent molecular substitution rate heterogeneity and (ii) biased sampling of representative major lineages. These results demonstrate the impact of (potentially common) model violations. Here, we suggest another potential challenge: that the configuration of the statistical inference problem (i.e., the parameters, their relationships, and associated priors) alone may preclude the reconstruction of the paleontological timeframe for the crown age of angiosperms. We demonstrate, through sampling from the joint prior (formed by combining the tree (diversification) prior with the calibration densities specified for fossil-calibrated nodes) that with no data present at all, that, an Early Cretaceous crown angiosperms is rejected (i.e., has essentially zero probability). More worrisome, however, is that, for the 24 nodes calibrated by fossils, almost all have indistinguishable marginal prior and posterior age distributions when employing routine lognormal fossil calibration priors. These results indicate that there is inadequate information in the data to overrule the joint prior. Given that these calibrated nodes are strategically placed in disparate regions of the tree, they act to anchor the tree scaffold, and so the posterior inference for the tree as a whole is largely determined by the pseudo-data present in the (often arbitrary) calibration densities. We recommend, as for any Bayesian analysis, that marginal prior and posterior distributions be carefully compared to determine whether signal is coming from the data or prior belief, especially for parameters of direct interest. This recommendation is not novel. However, given how rarely such checks are carried out in evolutionary biology, it bears repeating. Our results demonstrate the fundamental importance of prior/posterior comparisons in any Bayesian analysis, and we hope that they further encourage both researchers and journals to consistently adopt, this crucial step as standard practice. Finally, we note that the results presented here do not refute the biological modelling concerns identified by Beaulieu et al. (2015). Both sets of issues remain apposite to the goals of accurate divergence time estimation, and only by considering them in tandem can we move forward more confidently. [marginal priors; information content; diptych; divergence time estimation; fossil record; BEAST; angiosperms.]


AoB Plants ◽  
2021 ◽  
Author(s):  
Min-Jie Li ◽  
Huan-Xi Yu ◽  
Xian-Lin Guo ◽  
Xing-Jin He

Abstract The disjunctive distribution (Europe-Caucasus-Asia) and species diversification across Eurasia for the genus Allium sect. Daghestanica has fascinating attractions for researchers aiming to understanding the development and history of the modern Eurasia flora. However, no any studies have been carried out to address the evolutionary history of this section. Based on the nrITS and cpDNA fragments (trnL-trnF and rpl32-trnL), the evolutionary history of the third evolutionary line (EL3) of the genus Allium was reconstructed and we further elucidate the evolutionary line of sect. Daghestanica under this background. Our molecular phylogeny recovered two highly supported clades in sect. Daghestanica: the Clade I includes Caucasian-European species and Asian A. maowenense, A. xinlongense and A. carolinianum collected in Qinghai; the Clade II comprises Asian yellowish tepal species, A. chrysanthum, A. chrysocephalum, A. herderianum, A. rude and A. xichuanense. The divergence time estimation and biogeography inference indicated that Asian ancestor located in the QTP and the adjacent region could have migrated to Caucasus and Europe distributions around the Late Miocene and resulted in further divergence and speciation; Asian ancestor underwent the rapid radiation in the QTP and the adjacent region most likely due to the heterogeneous ecology of the QTP resulted from the orogeneses around 4–3 Mya. Our study provides a picture to understand the origin and species diversification across Eurasia for sect. Daghestanica.


Mycologia ◽  
2018 ◽  
Vol 110 (3) ◽  
pp. 526-545 ◽  
Author(s):  
Debora Cervieri Guterres ◽  
Samuel Galvão-Elias ◽  
Bruno Cézar Pereira de Souza ◽  
Danilo Batista Pinho ◽  
Maria do Desterro Mendes dos Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document