scholarly journals Major drug resistance mutations to HIV-1 protease inhibitors (PI) among patients exposed to PI class failing antiretroviral therapy in São Paulo State, Brazil

PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223210
Author(s):  
Giselle de Faria Romero Soldi ◽  
Isadora Coutinho Ribeiro ◽  
Cintia Mayumi Ahagon ◽  
Luana Portes Ozório Coelho ◽  
Gabriela Bastos Cabral ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yury Oliveira Chaves ◽  
Flávio Ribeiro Pereira ◽  
Rebeca de Souza Pinheiro ◽  
Diego Rafael Lima Batista ◽  
Antônio Alcirley da Silva Balieiro ◽  
...  

Virologic failure may occur because of poor treatment adherence and/or viral drug resistance mutations (DRM). In Brazil, the northern region exhibits the worst epidemiological scenarios for the human immunodeficiency virus (HIV). Thus, this study is aimed at investigating the genetic diversity of HIV-1 and DRM in Manaus. The cross-sectional study included people living with HIV on combined antiretroviral therapy and who had experienced virological failure during 2018-2019. Sequencing of the protease/reverse transcriptase (PR/RT) and C2V3 of the viral envelope gp120 (Env) regions was analyzed to determine subtypes/variants of HIV-1, DRMs, and tropism. Ninety-two individuals were analyzed in the study. Approximately 72% of them were male and 74% self-declared as heterosexual. Phylogenetic inference (PR/RT-Env) showed that most sequences were B subtype, followed by BF1 or B C mosaic genomes and few F1 and C sequences. Among the variants of subtype B at PR/RT, 84.3% were pandemic ( B PAN ), and 15.7% were Caribbean ( B CAR ). The DRMs most frequent were M184I/V (82.9%) for nucleoside reverse transcriptase inhibitors (NRTI), K103N/S (63.4%) for nonnucleoside reverse transcriptase inhibitor (NNRTI), and V82A/L/M (7.3%) for protease inhibitors (PI). DRM analysis depicted high levels of resistance for lamivudine and efavirenz in over 82.9% of individuals; although, low (7.7%) cross-resistance to etravirine was observed. A low level of resistance to protease inhibitors was found and included patients that take atazanavir/ritonavir (16.6%) and lopinavir (11.1%), which confirms that these antiretrovirals can be used—for most individuals. The thymidine analog mutations-2 (TAM-2) resistance pathway was higher in B CAR than in B PAN . Similar results from other Brazilian studies regarding HIV drug resistance were observed; however, we underscore a need for additional studies regarding subtype B CAR variants. Molecular epidemiology studies are an important tool for monitoring the prevalence of HIV drug resistance and can influence the public health policies.


2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomohiro Kotaki ◽  
Siti Qamariyah Khairunisa ◽  
Adiana Mutamsari Witaningrum ◽  
Muhammad Qushai Yunifiar M ◽  
Septhia Dwi Sukartiningrum ◽  
...  

Author(s):  
Flávia Jacqueline Almeida ◽  
Rosangela Rodrigues ◽  
Mayra Simioni Zaparoli ◽  
Eitan Naaman Berezin ◽  
Marco Aurélio Palazzi Sáfadi ◽  
...  

2020 ◽  
Author(s):  
Billal Musah Obeng ◽  
Evelyn Yayra Bonney ◽  
Lucy Asamoah-Akuoko ◽  
Nicholas Israel Nii-Trebi ◽  
Gifty Mawuli ◽  
...  

Abstract Background: Detection of HIV-1 transmitted drug resistance (TDR) and subtype diversity (SD) are public health strategies to assess current HIV-1 regimen and ensure effective therapeutic outcomes of ART among HIV-1 patients. Globally, limited data exist on TDR and SD among blood donors. In this study, drug resistance mutations and subtype diversity among HIV-1 sero-positive blood donors in Accra, Ghana was characterized.Methods: Purposive sampling method was used to collect 81 HIV sero-positive blood samples from the Southern Area Blood Center and confirmed by serology as HIV-1 and/or HIV-2. Viral RNA was only extracted from plasma samples confirmed as HIV-1 positive. Complementary DNA (cDNA) was synthesized using the RNA as a template and subsequently amplified by nested PCR with specific primers. The expected products were verified, purified and sequenced. Neighbor-joining tree with the Kimura’s 2-parameter distances was generated with the RT sequences using Molecular Evolutionary Genetic Analysis version 6.0 (MEGA 6.0).Results: Out of the 81 plasma samples, 60 (74%) were confirmed as HIV-1 sero-positive by INNO-LIA HIVI/II Score kit with no HIV-2 and dual HIV-1/2 infections. The remaining samples, 21 (26%) were confirmed as HIV sero-negative. Of the 60 confirmed positive samples, (32) 53% and (28) 50% were successfully amplified in the RT and PR genes respectively. Nucleotide sequencing of amplified samples revealed the presence of major drug resistance mutations in two (2) samples; E138A in one sample and another with K65R. HIV-1 Subtypes including subtypes A, B, CRF02_AG and CRF09_cpx were found. Conclusion: This study found major drug resistance mutations, E138A and K65R in the RT gene that confer high level resistance to most NNRTIs and NRTI respectively. CRF02_AG was most predominant, the recorded percentage of subtype B and the evolutionary relationship inferred by phylogenetic analysis suggest possible subtype importation. The data obtained would inform the selection of drugs for ART initiation to maximize therapeutic options in drug-naïve HIV-1 patients in Ghana.


2015 ◽  
Vol 91 (Suppl 2) ◽  
pp. A233.3-A234
Author(s):  
H Eloudyi ◽  
S Lemrabet ◽  
M Malmoussi ◽  
Z Ouagari ◽  
E Elharti ◽  
...  

2016 ◽  
Vol 113 (44) ◽  
pp. 12456-12461 ◽  
Author(s):  
Lalit Deshmukh ◽  
John M. Louis ◽  
Rodolfo Ghirlando ◽  
G. Marius Clore

Cleavage of the group-specific antigen (Gag) polyprotein by HIV-1 protease represents the critical first step in the conversion of immature noninfectious viral particles to mature infectious virions. Selective pressure exerted by HIV-1 protease inhibitors, a mainstay of current anti–HIV-1 therapies, results in the accumulation of drug resistance mutations in both protease and Gag. Surprisingly, a large number of these mutations (known as secondary or compensatory mutations) occur outside the active site of protease or the cleavage sites of Gag (located within intrinsically disordered linkers connecting the globular domains of Gag to one another), suggesting that transient encounter complexes involving the globular domains of Gag may play a role in guiding and facilitating access of the protease to the Gag cleavage sites. Here, using large fragments of Gag, as well as catalytically inactive and active variants of protease, we probe the nature of such rare encounter complexes using intermolecular paramagnetic relaxation enhancement, a highly sensitive technique for detecting sparsely populated states. We show that Gag-protease encounter complexes are primarily mediated by interactions between protease and the globular domains of Gag and that the sites of transient interactions are correlated with surface exposed regions that exhibit a high propensity to mutate in the presence of HIV-1 protease inhibitors.


2012 ◽  
Vol 16 (3) ◽  
pp. 284-288
Author(s):  
Suharni Mohamad ◽  
Zakuan Zainy Deris ◽  
Nik Khairulddin Yusoff ◽  
Tg Ahmad Akram Tg Mohd Ariffin ◽  
Rafidah Hanim Shueb

Sign in / Sign up

Export Citation Format

Share Document