scholarly journals Early versus late initiation of renal replacement therapy for acute kidney injury in critically ill patients: A systematic review and meta-analysis

PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223493 ◽  
Author(s):  
Li Xiao ◽  
Lu Jia ◽  
Rongshan Li ◽  
Yu Zhang ◽  
Hongming Ji ◽  
...  
Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Heng-Chih Pan ◽  
Ying-Ying Chen ◽  
I-Jung Tsai ◽  
Chih-Chung Shiao ◽  
Tao-Min Huang ◽  
...  

Abstract Background Acute kidney injury (AKI) is a common yet possibly fatal complication among critically ill patients in intensive care units (ICU). Although renal replacement therapy (RRT) is an important supportive management for severe AKI patients, the optimal timing of RRT initiation for these patients is still unclear. Methods In this systematic review, we searched all relevant randomized controlled trials (RCTs) that directly compared accelerated with standard initiation of RRT from PUBMED, MEDLINE, EMBASE, and Cnki.net published prior to July, 20, 2020. We extracted study characteristics and outcomes of being free of dialysis, dialysis dependence and mortality. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. Results We identified 56 published relevant studies from 1071 screened abstracts. Ten RCTs with 4753 critically ill AKI patients in intensive care unit (ICU) were included in this meta-analysis. In our study, accelerated and standard RRT group were not associated with all-cause mortality (log odds-ratio [OR]: − 0.04, 95% confidence intervals [CI] − 0.16 to 0.07, p = 0.46) and free of dialysis (log OR: − 0.03, 95% CI − 0.14 to 0.09, p = 0.65). In the subgroup analyses, accelerated RRT group was significantly associated with lower risk of all-cause mortality in the surgical ICU and for those who received continuous renal replacement therapy (CRRT). In addition, patients in these two subgroups had higher chances of being eventually dialysis-free. However, accelerated initiation of RRT augmented the risk of dialysis dependence in the subgroups of patients treated with non-CRRT modality and whose Sequential Organ Failure Assessment (SOFA) score were more than 11. Conclusions In this meta-analysis, critically ill patients with severe AKI would benefit from accelerated RRT initiation regarding all-cause mortality and being eventually free of dialysis only if they were surgical ICU patients or if they underwent CRRT treatment. However, the risk of dialysis dependence was increased in the accelerated RRT group when those patients used non-CRRT modality or had high SOFA scores. All the literatures reviewed in this study were highly heterogeneous and potentially subject to biases. Trial registration CRD42020201466, Sep 07, 2020. https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=201466.


2021 ◽  
Vol 8 ◽  
pp. 205435812110521
Author(s):  
A. Cau ◽  
M. P. Cheng ◽  
Terry Lee ◽  
A. Levin ◽  
T. C. Lee ◽  
...  

Background: Acute kidney injury (AKI) is a potentially fatal complication of Coronavirus Disease-2019 (COVID-19). Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, to its viral receptor, angiotensin converting enzyme 2 (ACE2), results in viral entry and may cause AKI. Objectives: We performed a systematic review and meta-analysis of the frequencies of AKI and renal replacement therapy (RRT) in critically ill COVID-19 patients and compared those frequencies with patients who were infected by respiratory viruses that bind or downregulate ACE2 (ACE2-associated viruses) and viruses that do not bind nor downregulate ACE2 (non-ACE2-associated viruses). Design: Systematic review and meta-analysis. Setting: Observational studies on COVID-19 and other respiratory viral infections reporting AKI and RRT were included. The exclusion criteria were non-English articles, non-peer-reviewed articles, review articles, studies that included patients under the age of 18, studies including fewer than 10 patients, and studies not reporting AKI and RRT rates. Patients: Adult COVID-19, Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and influenza patients. Measurements: We extracted the following data from the included studies: author, year, study location, age, sex, race, diabetes mellitus, hypertension, chronic kidney disease, shock, vasopressor use, mortality, intensive care unit (ICU) admission, ICU mortality, AKI, and RRT. Methods: We systematically searched PubMed and EMBASE for articles reporting AKI or RRT. AKI was defined by authors of included studies. Critical illness was defined by ICU admission. We performed a random effects meta-analysis to calculate pooled estimates for the AKI and RRT rate within each virus group using a random intercept logistic regression model. Results: Of 23 655 hospitalized, critically ill COVID-19 patients, AKI frequencies were not significantly different between COVID-19 patients (51%, 95% confidence interval [CI]: 44%-57%) and critically ill patients infected with ACE2-associated (56%, 95% CI: 37%-74%, P = .610) or non-ACE2-associated viruses (63%, 95% CI: 43%-79%, P = .255). Pooled RRT rates were also not significantly different between critically ill, hospitalized patients with COVID-19 (20%, 95% CI: 16%-24%) and ACE2-associated viruses (18%, 95% CI: 8%-33%, P = .747). RRT rates for both COVID-19 and ACE2-associated viruses were significantly different ( P < .001 for both) from non-ACE2-associated viruses (49%, 95% CI: 44%-54%). After adjusting for shock or vasopressor use, AKI and RRT rates were not significantly different between groups. Limitations: Limitations of this study include the heterogeneity of definitions of AKI that were used across different virus studies. We could not match severity of infection or do propensity matching across studies. Most of the included studies were conducted in retrospective fashion. Last, we did not include non-English publications. Conclusions: Our findings suggest that viral ACE2 association does not significantly alter the rates of AKI and RRT among critically ill patients admitted to the ICU. However, the rate of RRT is lower in patients with COVID-19 or ACE2-associated viruses when compared with patients infected with non-ACE2-binding viruses, which might partly be due to the lower frequencies of shock and use of vasopressors in these two virus groups. Prospective studies are necessary to demonstrate whether modulation of the ACE2 axis with Renin-Angiotensin System inhibitors impacts the rates of AKI and whether they are beneficial or harmful in COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document