scholarly journals An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0224934 ◽  
Author(s):  
Saurabh Shukla ◽  
Mohd Fadzil Hassan ◽  
Muhammad Khalid Khan ◽  
Low Tang Jung ◽  
Azlan Awang
2021 ◽  
Vol 11 (4) ◽  
pp. 1909
Author(s):  
Jung-Fa Tsai ◽  
Chun-Hua Huang ◽  
Ming-Hua Lin

With the advent of the Internet of Things era, more and more emerging applications need to provide real-time interactive services. Although cloud computing has many advantages, the massive expansion of the Internet of Things devices and the explosive growth of data may induce network congestion and add network latency. Cloud-fog computing processes some data locally on edge devices to reduce the network delay. This paper investigates the optimal task assignment strategy by considering the execution time and operating costs in a cloud-fog computing environment. Linear transformation techniques are used to solve the nonlinear mathematical programming model of the task assignment problem in cloud-fog computing systems. The proposed method can determine the globally optimal solution for the task assignment problem based on the requirements of the tasks, the processing speed of nodes, and the resource usage cost of nodes in cloud-fog computing systems.


Author(s):  
Kashif Munir ◽  
Lawan Ahmed Mohammed

Fog computing is a distributed infrastructure in which certain application processes or services are managed at the edge of the network by a smart device. Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the fog platform highly suitable for time and location-sensitive applications. For example, internet of things (IoT) devices are required to quickly process a large amount of data. The significance of enterprise data and increased access rates from low-resource terminal devices demand reliable and low-cost authentication protocols. Lots of researchers have proposed authentication protocols with varied efficiencies. As a part of this chapter, the authors propose a secure authentication protocol that is strongly secure and best suited for the fog computing environment.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


Sign in / Sign up

Export Citation Format

Share Document