scholarly journals Significance-based multi-scale method for network community detection and its application in disease-gene prediction

PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0227244
Author(s):  
Ke Hu ◽  
Ju Xiang ◽  
Yun-Xia Yu ◽  
Liang Tang ◽  
Qin Xiang ◽  
...  
Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1713
Author(s):  
Manuela Petti ◽  
Lorenzo Farina ◽  
Federico Francone ◽  
Stefano Lucidi ◽  
Amalia Macali ◽  
...  

Disease gene prediction is to date one of the main computational challenges of precision medicine. It is still uncertain if disease genes have unique functional properties that distinguish them from other non-disease genes or, from a network perspective, if they are located randomly in the interactome or show specific patterns in the network topology. In this study, we propose a new method for disease gene prediction based on the use of biological knowledge-bases (gene-disease associations, genes functional annotations, etc.) and interactome network topology. The proposed algorithm called MOSES is based on the definition of two somewhat opposing sets of genes both disease-specific from different perspectives: warm seeds (i.e., disease genes obtained from databases) and cold seeds (genes far from the disease genes on the interactome and not involved in their biological functions). The application of MOSES to a set of 40 diseases showed that the suggested putative disease genes are significantly enriched in their reference disease. Reassuringly, known and predicted disease genes together, tend to form a connected network module on the human interactome, mitigating the scattered distribution of disease genes which is probably due to both the paucity of disease-gene associations and the incompleteness of the interactome.


2019 ◽  
Vol 15 (7) ◽  
pp. e1007078 ◽  
Author(s):  
Juan J. Cáceres ◽  
Alberto Paccanaro

2020 ◽  
Vol 21 (S2) ◽  
Author(s):  
Ping Luo ◽  
Li-Ping Tian ◽  
Bolin Chen ◽  
Qianghua Xiao ◽  
Fang-Xiang Wu

Author(s):  
Sezin Kircali Ata ◽  
Min Wu ◽  
Yuan Fang ◽  
Le Ou-Yang ◽  
Chee Keong Kwoh ◽  
...  

Abstract Disease–gene association through genome-wide association study (GWAS) is an arduous task for researchers. Investigating single nucleotide polymorphisms that correlate with specific diseases needs statistical analysis of associations. Considering the huge number of possible mutations, in addition to its high cost, another important drawback of GWAS analysis is the large number of false positives. Thus, researchers search for more evidence to cross-check their results through different sources. To provide the researchers with alternative and complementary low-cost disease–gene association evidence, computational approaches come into play. Since molecular networks are able to capture complex interplay among molecules in diseases, they become one of the most extensively used data for disease–gene association prediction. In this survey, we aim to provide a comprehensive and up-to-date review of network-based methods for disease gene prediction. We also conduct an empirical analysis on 14 state-of-the-art methods. To summarize, we first elucidate the task definition for disease gene prediction. Secondly, we categorize existing network-based efforts into network diffusion methods, traditional machine learning methods with handcrafted graph features and graph representation learning methods. Thirdly, an empirical analysis is conducted to evaluate the performance of the selected methods across seven diseases. We also provide distinguishing findings about the discussed methods based on our empirical analysis. Finally, we highlight potential research directions for future studies on disease gene prediction.


Sign in / Sign up

Export Citation Format

Share Document