scholarly journals Comparison of the double loop knot stitch and Kessler stitch for Achilles tendon repair: A biomechanical cadaver study

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243306
Author(s):  
Stephan Frosch ◽  
Gottfried Buchhorn ◽  
Thelonius Hawellek ◽  
Tim Alexander Walde ◽  
Wolfgang Lehmann ◽  
...  

Tendon elongation after Achilles tendon (AT) repair is associated with the clinical outcome. Reliable suture techniques are essential to reduce gap formations and to allow early mobilization. Cyclic loading conditions represent the repetitive loading in rehabilitation. The aim of this study was to compare the Kessler stitch and double loop knot stitch (DLKS) in a cyclic loading program focussing on gap formation. Sixteen human cadaveric ATs were transected and sutured using either the Kessler stitch or DLKS (eight matched pairs). The suture-tendon configurations were subjected to cyclic loading and additional ultimate load to failure testing using the Zwick 1446 universal testing machine. Each AT survived cyclic loading, with a mean gap formation less than 5 mm after 1000 cycles. The mechanical properties of the Kessler stitch and DLKS were not significantly different after cyclic loading with a mean displacement of 4.57 mm (± 1.16) for the Kessler stitch and 4.85 mm (± 1.14) for the DLKS (P = .76). There were no significant differences in the ultimate load testing (P = .85). Both bioprotective techniques prevent excessive gaping in cyclic testing when tendon loading is moderate. Our data and those from literature of gap formation in cyclic and ultimate loading allow the conclusion, that early aggressive AT loading after repair (e.g. full weightbearing) overstrain simple as well as complex suture configurations. Initial intraoperative tightening of the knots (preloading) before locking is important to decrease postoperative elongation.

2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0001
Author(s):  
Robert Dekker ◽  
Charles Qin ◽  
Cort Lawton ◽  
Muturi Muriuki ◽  
Robert Havey ◽  
...  

Category: Basic Sciences/Biologics, Sports Introduction/Purpose: The drive to reduce soft tissue complications after Achilles tendon repair has led to increased interest in less invasive techniques. The PARS Achilles Jig System is one option that has gained popularity as an alternative to open repair. For many surgeons, standard open repair consists of a Krackow locking-loop technique. We compared the load to failure of a limited open and open Krackow technique for repair of Achilles tendon ruptures. Methods: Nine pairs of human cadaver lower limbs were randomized to undergo either a Krackow locking loop repair with epitendinous weave or a PARS Achilles Jig System Repair. Specimen were loaded to failure on a servo-hydraulic material testing machine. From load- displacement curves, initial linear stiffness, load to failure, and work to failure were calculated. Results: The average load to failure for Krackow repair (353.8 ± 88.8 N) and PARS repair (313.3 ± 99.9 N) was not statistically different (p = .38). The average work to failure for open repair (6.4 ± 2.3 J) and PARS repair (6.3 ± 3.5 J) was also not statistically different (p = .904). Mean initial linear stiffness of the Krackow repair (17.8 ± 5.4 N/mm) was significantly greater than the PARS repair (11.8 ± 2.5 N/mm) (p = .011). The predominant location of failure for Krackow repair was at the suture itself. In contrast, the PARS repair predominantly failed at the suture-tendon interface. Conclusion: The results suggest no difference between the Krackow and PARS repairs in terms of ultimate strength or work to failure. The Krackow repair demonstrated a higher initial linear stiffness than the PARS, which may imply a greater ability to withstand gap formation. With less devitalization to surrounding soft tissue and equal repair strength, the PARS system should be considered a favourable option for repair of ruptured Achilles tendons.


2000 ◽  
Vol 89 (4) ◽  
pp. 1352-1359 ◽  
Author(s):  
M. De Zee ◽  
F. Bojsen-Møller ◽  
M. Voigt

The aim of this project was to see whether the tendon would show creep during long-term dynamic loading (here referred to as dynamic creep). Pig tendons were loaded by a material-testing machine with a human Achilles tendon force profile (1.37 Hz, 3% strain, 1,600 cycles), which was obtained in an earlier in vivo experiment during running. All the pig tendons showed some dynamic creep during cyclic loading (between 0.23 ± 0.15 and 0.42 ± 0.21%, means ± SD). The pig tendon data were used as an input of a model to predict dynamic creep in the human Achilles tendon during running of a marathon and to evaluate whether there might consequently be an influence on group Ia afferent-mediated length and velocity feedback from muscle spindles. The predicted dynamic creep in the Achilles tendon was considered to be too small to have a significant influence on the length and velocity feedback from soleus during running. In spite of the characteristic nonlinear viscoelastic behavior of tendons, our results demonstrate that these properties have a minor effect on the ability of tendons to act as predictable, stable, and elastic force transmitters during long-term cyclic loading.


2017 ◽  
Vol 2 (4) ◽  
pp. 247301141771543 ◽  
Author(s):  
Robert G. Dekker ◽  
Charles Qin ◽  
Cort Lawton ◽  
Muturi G. Muriuki ◽  
Robert M. Havey ◽  
...  

Background: Soft tissue complications after Achilles tendon repair has led to increased interest in less invasive techniques. Various limited open techniques have gained popularity as an alternative to open operative repair. The purpose of this study was to biomechanically compare an open Krackow and limited open repair for Achilles tendon rupture. We hypothesized that there would be no statistical difference in load to failure, work to failure, and initial linear stiffness. Methods: A simulated Achilles tendon rupture was created 4 cm proximal to its insertion in 18 fresh-frozen cadaveric below-knee lower limbs. Specimens were randomized to open or limited open PARS Achilles Jig System repair. Repairs were loaded to failure at a rate of 25.4 mm/s to reflect loading during normal ankle range of motion. Load to failure, work to failure, and initial linear stiffness were compared between the 2 repair types. Results: The average load to failure (353.8 ± 88.8 N vs 313.3 ± 99.9 N; P = .38) and work to failure (6.4 ± 2.3 J vs 6.3 ± 3.5 J; P = .904) were not statistically different for Krackow and PARS repair, respectively. Mean initial linear stiffness of the Krackow repair (17.8 ± 5.4 N/mm) was significantly greater than PARS repair (11.8 ± 2.5 N/mm) ( P = .011). Conclusion: No significant difference in repair strength was seen, but higher initial linear stiffness for Krackow repair suggests superior resistance to gap formation, which may occur during postoperative rehabilitation. With equal repair strength, but less soft tissue devitalization, the PARS may be a favorable option for patients with risk factors for soft tissue complications.


2005 ◽  
Vol 30 (4) ◽  
pp. 374-378 ◽  
Author(s):  
Y. CAO ◽  
J. B. TANG

We report a four-strand modification of the Tang technique of tendon repair that uses fewer sutures and fewer knots on the tendon surface. This repair consists of four longitudinal and two horizontal strands that form a “U” configuration within the tendon made with a single looped suture. Thirty-four fresh pig flexor tendons were divided into 3 groups and repaired with the four-strand modified Tang method, a double-looped four-strand method or a double Kessler repair (four-strand). The tendons were subjected to a single cycle of load-to-failure test in a tensile testing machine. The initial force, 2-mm gap formation force and ultimate strength of the four-strand modified Tang repair were statistically identical to those of the double looped suture and were superior to those of the double Kessler repair. Ultimate strength was 43.4 ± 4.3 N for the four-strand modified Tang method, 45.2 ± 4.0 N for the double-looped method and 39.1 ± 4.0 N for the double Kessler repair. The four-strand modification of the Tang method appears to have strength sufficient for protected active finger motion. Given our preliminary clinical experience with this method, we recommend this new and simplified technique for clinical flexor tendon repairs.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 293-298
Author(s):  
Stephan Frosch ◽  
Gottfried Buchhorn ◽  
Fabian Kück ◽  
Tim Alexander Walde ◽  
Wolfgang Lehmann ◽  
...  

Abstract In rotator cuff repair, strong and reliable suturing is necessary to decrease failure rates. The biomechanics of two self-cinching stitches – the single-loop knot stitch (SLKS) and the double-loop knot stitch (DLKS) – and the modified Mason-Allen stitch (mMAS) were compared. Twenty-seven porcine infraspinatus tendons were randomized among the three stitches. Each was cyclically loaded (10–80–200 N for 50 cycles each) while the gap formation was measured. Next, ultimate load to failure was tested. The gap widths after cyclic loading were 8.72 ± 0.93 mm for the DLKS, 8.65 ± 1.33 mm for the mMAS, and 9.14 ± 0.89 mm for the SLKS, without significant differences. The DLKS showed the highest ultimate load (350.52 ± 38.54 N) compared with the mMAS (320.88 ± 53.29 N; p = 0.304) and the SLKS (290.54 ± 60.51 N; p < 0.05). The DLKS showed similar reliability and better strength compared with the mMAS, while the SLKS showed a slight but not significant decrease in performance. In our experience, the DLKS and SLKS have clinical advantages, as they are easy to perform and the self-cinching loop knot allows the surgeon to grasp degenerative tendon tissue. Initial intraoperative tightening of the suture complex (preloading) before locking is important in order to decrease postoperative elongation.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
William McCartney ◽  
Ciprian Ober ◽  
Maria Benito ◽  
Bryan MacDonald

Abstract Background The common calcanean tendon (Achilles tendon) is the strongest and largest tendon and is one of the most commonly affected by spontaneous rupture. Different suture techniques are used to repair the tendon rupture. We compare the biomechanical properties of three different modalities of suture pattern in a mechanical experiment in rabbits with the purpose of evaluating the use of polypropylene mesh augmentation for Achilles tendon repair to find out the best surgical option. Methods The study tests single cycle to failure tensile strength characteristics of three different combinations of the 3-loop pulley (3-LP) suture technique with polypropylene mesh, and statistically compares the biomechanical properties as the maximum load at failure for all 3-LP repair. Results The normal Achilles tendon—control group—failed at a mean load of 25.5 + 13.6; the experimental groups failed at a significantly lower load (p < 0.001), with the group of 3-LP suture with polypropylene mesh included in the suture being the more similar to controls, but all the groups exhibited statistically significant differences with regard to normal tendons (p < 0.001). The distance at which each group failed was also significant between control and experimental groups (p < 0.001) with the exception of the suture-only group and the group with the mesh over the suture (p = 0.15). Conclusion Results from this study suggest that incorporating the mesh within the suture provides benefit to the Achilles tendon repair by improving strength and resistance to pull through. However, further in vivo studies will be necessary to confirm these results and incorporate this technique to the routine human and veterinary surgery.


2001 ◽  
Vol 26 (4) ◽  
pp. 301-306 ◽  
Author(s):  
A. WADA ◽  
H. KUBOTA ◽  
K. MIYANISHI ◽  
H. HATANAKA ◽  
H. MIURA ◽  
...  

We evaluated a technique of four-strand double-modified locking Kessler flexor tendon repair in healing tendons. Seventy-two canine flexor digitorum profundus tendons in Zone 2 were repaired and evaluated following either active mobilization or immobilization at 0, 7, 14, 28 and 42 days after surgery. Fifty-six tendons were examined for gap and ultimate strength using a tensile testing machine and 16 were evaluated with standard hematoxylin and eosin, and Masson’s trichrome staining. All tendons healed without rupture or gap formation of more than 1 mm, thus demonstrating that this repair technique has enough tensile strength to withstand early active mobilization. The gap and ultimate strength of actively mobilized tendons did not decrease significantly during the first 7 days, and were significantly greater than those of immobilized tendons throughout the 42-day study period. Actively mobilized tendons healed without the extrinsic adhesions and large tendon calluses that were found in immobilized tendons.


2002 ◽  
Vol 27 (2) ◽  
pp. 161-164 ◽  
Author(s):  
Y. CAO ◽  
R. G. XIE ◽  
J. B. TANG

Thirty-six fresh pig flexor tendons were repaired using either the modified Kessler method or the Tang method. Nine tendons from each group were tested in an Instron tensile testing machine with the tendons passing 90° around a pulley. The other nine tendons from each group were pulled linearly by the testing machine. The 2mm gap formation force of the tendons repaired with the modified Kessler and Tang methods and pulled at 90° were 64%±5% and 79%±9% respectively of those forces recorded during linear testing. The ultimate strengths of tendons repaired by the modified Kessler and Tang methods and pulled at 90° were 76%±6% and 81%±8% respectively of the forces measured during linear testing. The percentage gap formation and ultimate strength of the Tang method was significantly higher than that of the modified Kessler suture when the tendons were pulled around a pulley. This demonstrates that the Tang suture, with its main components in the dorsal part of the repaired tendon, has greater tension resistance capacity than conventional tendon sutures which are placed in the middle of the tendon. This study suggests that dorsally-enhanced multiple tendon sutures are better placed to sustain the tension generated during active finger flexion.


2017 ◽  
Vol 5 (5) ◽  
pp. 232596711770747 ◽  
Author(s):  
Rufus O. Van Dyke ◽  
Sejul A. Chaudhary ◽  
Gregory Gould ◽  
Roman Trimba ◽  
Richard T. Laughlin

Background: Acute midsubstance Achilles tendon ruptures are a common orthopaedic problem for which the optimal repair technique and suture type remain controversial. Head-to-head comparisons of current fixation constructs are needed to establish which stitch/suture combination is most biomechanically favorable. Hypothesis: Of the tested fixation constructs, Giftbox repairs with Fiberwire will exhibit superior stiffness and strength during biomechanical testing. Study Design: Controlled laboratory study. Methods: Two biomechanical trials were performed, isolating stitch technique and suture type, respectively. In trial 1, 12 transected fresh-frozen cadaveric Achilles tendon pairs were randomized to receive either the Giftbox-modified Krackow or the Bunnell stitch with No. 2 Fiberwire suture. Each repair underwent cyclic loading, oscillating between 10 and 100 N at 2 Hz for 1000 cycles, with repair gapping measured at 500 and 1000 cycles. Load-to-failure testing was then performed, and clinical and catastrophic failure values were recorded. In trial 2, 10 additional paired cadaveric Achilles tendons were randomized to receive a Giftbox repair with either No. 2 Fiberwire or No. 2 Ultrabraid. Testing and data collections protocols in trial 2 replicated those used in trial 1. Results: In trial 1, the Bunnell group had 2 failures during cyclic loading while the Giftbox had no failures. The mean tendon gapping after cyclic loading was significantly lower in the Giftbox repairs (0.13 vs 2.29 mm, P = .02). Giftbox repairs were significantly stiffer than Bunnell (47.5 vs 38.7 N/mm, P = .019) and showed more tendon elongation (5.9 ± 0.8 vs 4.5 ± 1.0 mm, P = .012) after 1000 cycles. Mean clinical load to failure was significantly higher for Giftbox repairs (373 vs 285 N, P = .02), while no significant difference in catastrophic load to failure was observed (mean, 379 vs 336 N; P = .61). In trial 2, there were no failures during cyclic loading. The Giftbox + Fiberwire repairs recorded higher clinical load-to-failure values compared with Giftbox + Ultrabraid (mean, 361 vs 239 N; P = .005). No other biomechanical differences were observed in trial 2. Conclusion: Simulated early rehabilitation biomechanical testing showed that Giftbox-modified Krackow Achilles repair technique with Fiberwire suture was stronger and more resistant to gap formation at the repair site than combinations that incorporated the Bunnell stitch or Ultrabraid suture. Clinical Relevance: A more in-depth understanding of the biomechanical properties of the Giftbox repair will help inform surgical decision making because stronger repairs are less likely to fail during accelerated postoperative rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document