scholarly journals Intra- and inter-rater reliability of joint range of motion tests using tape measure, digital inclinometer and inertial motion capturing

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243646
Author(s):  
Laura Fraeulin ◽  
Fabian Holzgreve ◽  
Mark Brinkbäumer ◽  
Anna Dziuba ◽  
David Friebe ◽  
...  

Background In clinical practice range of motion (RoM) is usually assessed with low-cost devices such as a tape measure (TM) or a digital inclinometer (DI). However, the intra- and inter-rater reliability of typical RoM tests differ, which impairs the evaluation of therapy progress. More objective and reliable kinematic data can be obtained with the inertial motion capture system (IMC) by Xsens. The aim of this study was to obtain the intra- and inter-rater reliability of the TM, DI and IMC methods in five RoM tests: modified Thomas test (DI), shoulder test modified after Janda (DI), retroflexion of the trunk modified after Janda (DI), lateral inclination (TM) and fingertip-to-floor test (TM). Methods Two raters executed the RoM tests (TM or DI) in a randomized order on 22 healthy individuals while, simultaneously, the IMC data (Xsens MVN) was collected. After 15 warm-up repetitions, each rater recorded five measurements. Findings Intra-rater reliabilities were (almost) perfect for tests in all three devices (ICCs 0.886–0.996). Inter-rater reliability was substantial to (almost) perfect in the DI (ICCs 0.71–0.87) and the IMC methods (ICCs 0.61–0.993) and (almost) perfect in the TM methods (ICCs 0.923–0.961). The measurement error (ME) for the tests measured in degree (°) was 0.9–3.3° for the DI methods and 0.5–1.2° for the IMC approaches. In the tests measured in centimeters the ME was 0.5–1.3cm for the TM methods and 0.6–2.7cm for the IMC methods. Pearson correlations between the results of the DI or the TM respectively with the IMC results were significant in all tests except for the shoulder test on the right body side (r = 0.41–0.81). Interpretation Measurement repetitions of either one or multiple trained raters can be considered reliable in all three devices.

DYNA ◽  
2017 ◽  
Vol 84 (201) ◽  
pp. 180 ◽  
Author(s):  
Andrés F. Ruiz-Olaya ◽  
Mauro Callejas-Cuervo ◽  
Claudia N. Lara-Herrera

El análisis del movimiento humano ha llegado a ser fundamental para una amplia gama de aplicaciones, tales como terapias físicas, neuro-rehabilitación, medicina deportiva, la evaluación de la funcionalidad del sistema motor y la medicina del trabajo. Este artículo se centra en el diseño, implementación y validación de un electrogoniómetro portátil basado en sensores inerciales y magnéticos para la adquisición del rango articular de movimiento. El sistema se compone de dos unidades de medición inercial y un microcontrolador que permite la captura de movimiento humano en tiempo real. El electrogoniómetro se validó tanto en condiciones estáticas como dinámicas, en comparación con un electrogoniómetro estándar comercial para movimientos de la articulación del codo. Para validación estática, el coeficiente de correlación de concordancia (ρC) obtenido fue 0.9605. El ρC obtenido para los movimientos cíclicos de baja velocidad fue 0.9830 y el ρC obtenido para los movimientos cíclicos de velocidad moderada fue 0.9619.


Author(s):  
Cemil Keskinoğlu ◽  
Ahmet Aydın

Joint movements are the key factor for the mobility of the people during daily activities. The evaluation of the joint movements is determined by the range of motion (ROM) parameters. The ROM might change due to age, gender, and some diseases. Therefore, it is essential to measure ROM accurately and compare it with the normal values of the healthy people. In this study, a low-cost, wireless, and wearable electrogoniometer was designed for highly precise and accurate measurements. The stability of the measurements is guaranteed with the quaternion based Kalman filter. The measurements of the developed system are compared with the traditional goniometer. The concordance correlation coefficient is calculated as a similarity metric, and the result is obtained as [Formula: see text]. In addition, a GUI was prepared to present 3D visualization of the movements in real-time with the ROM measurements and give visual feedback to the physiotherapists during physical examinations and to the patient during the home therapy sessions. The measurements also can be recorded using the GUI for retrospective analysis.


1993 ◽  
Vol 42 (2) ◽  
pp. 635-638
Author(s):  
Takeshi Arizono ◽  
Hideya Kawamura ◽  
Tomotaro Yamaguchi ◽  
Hiromasa Miura ◽  
Katsusada Honda ◽  
...  

2005 ◽  
Vol 10 (1) ◽  
pp. 42-43
Author(s):  
Robert D. Kersey

Sign in / Sign up

Export Citation Format

Share Document