scholarly journals Micro-size plankton abundance and assemblages in the western North Pacific Subtropical Gyre under microscopic observation

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250604
Author(s):  
Taketoshi Kodama ◽  
Tsuyoshi Watanabe ◽  
Yukiko Taniuchi ◽  
Akira Kuwata ◽  
Daisuke Hasegawa

While primary productivity in the oligotrophic North Pacific Subtropical Gyre (NPSG) is changing, the micro-size plankton community has not been evaluated in the last 4 decades, prompting a re-evaluation. We collected samples over three years (2016–2018) from depths of 10 to 200 m (n = 127), and the micro-size plankton were identified and counted to understand the heterogeneity of micro-size plankton community structure. The assemblages were consistent to the those of 4 decades ago. Dinophyceae (dinoflagellates) were the most numerically abundant, followed by Cryptophyceae and Bacillariophyceae (diatoms). The other micro-size plankton classes (Cyanophyceae, Haptophyceae, Dictyochophyceae, Euglenophyceae, and Prasinophyceae) were not always detected, whereas only Trichodesmium spp. was counted in the Cyanophyceae. Other unidentified autotrophic and heterotrophic flagellates were also significantly present, and their numeric abundance was higher than or at the same level as was that of the Dinophyceae. In the Dinophyceae, Gymnodiniaceae and Peridiniales were abundant. The chlorophyll a concentration and these class-level assemblages suggested micro-size plankton is not a major primary producer in this area. We applied generalized additive models (GAMs) and principal coordination analyses (PCoAs) to evaluate the habitats of every plankton group and the heterogeneity of the assemblages. The GAMs suggested that every classified plankton abundance showed a similar response to salinity, and we observed differences in habitats in terms of temperature and nitrate concentrations. Based on the PCoAs, we observed unique communities at the 200 m depth layer compared with those at the other sampling layers. The site scores of PCoAs indicated that the micro-size plankton assemblages are most heterogeneous at the 10 m depth layer. At such depth, diazotrophic Cyanophyceae (Trichodesmium spp.) are abundant, particularly in less-saline water. Therefore, nitrogen fixation may contribute to the heterogeneity in the abundance and assemblages in the western NPSG.

2020 ◽  
Author(s):  
Sara Ferron ◽  
Benedetto Barone ◽  
Matthew J Church ◽  
Angelicque E. White ◽  
David M. Karl

Abstract Recent evidence shows that the North Pacific subtropical gyre, the Kuroshio Extension (KE) and Oyashio Extension (OE) fronts have moved poleward in the past few decades. However, changes of the North Pacific Subtropical Fronts (STFs), anchored by the North Pacific subtropical countercurrent in the southern subtropical gyre, remain to be quantified. By synthesizing observations, reanalysis, and eddy-resolving ocean hindcasts, we show that the STFs, especially their eastern part, weakened (20%±5%) and moved poleward (1.6°±0.4°) from 1980 to 2018. Changes of the STFs are modified by mode waters to the north. We find that the central mode water (CMW) (180°-160°W) shows most significant weakening (18%±7%) and poleward shifting (2.4°±0.9°) trends, while the eastern part of the subtropical mode water (STMW) (160°E-180°) has similar but moderate changes (10% ± 8%; 0.9°±0.4°). Trends of the western part of the STMW (140°E-160°E) are not evident. The weakening and poleward shifting of mode waters and STFs are enhanced to the east and are mainly associated with changes of the northern deep mixed layers and outcrop lines—which have a growing northward shift as they elongate to the east. The eastern deep mixed layer shows the largest shallowing trend, where the subduction rate also decreases the most. The mixed layer and outcrop line changes are strongly coupled with the northward migration of the North Pacific subtropical gyre and the KE/OE jets as a result of the poleward expanded Hadley cell, indicating that the KE/OE fronts, mode waters, and STFs change as a whole system.


2013 ◽  
Vol 10 (9) ◽  
pp. 5947-5965 ◽  
Author(s):  
M. Girault ◽  
H. Arakawa ◽  
A. Barani ◽  
H. J. Ceccaldi ◽  
F. Hashihama ◽  
...  

Abstract. The distribution of ultraphytoplankton was investigated in the western North Pacific Subtropical Gyre (NPSG) during La Niña, a cold phase of El Niño Southern Oscillation (ENSO). Observations were conducted in a north-south transect (33.6–13.25° N) along the 141.5° E meridian in order to study the ultraplankton assemblages in various oligotrophic conditions. Analyses were performed at the single cell level by analytical flow cytometry. Five ultraphytoplankton groups (Prochlorococcus, Synechococcus, picoeukaryotes, nanoeukaryotes and nanocyanobacteria-like) defined by their optical properties were enumerated in three different areas visited during the cruise: the Kuroshio region, the subtropical Pacific gyre and a transition zone between the subtropical Pacific gyre and the Warm pool. Prochlorococcus outnumbered the other photoautotrophs in all the investigated areas. However, in terms of carbon biomass, an increase in the relative contribution of Synechococcus, picoeukaryotes and nanoeukaryotes was observed from the centre of the subtropical gyre to the Kuroshio area. In the Kuroshio region, a peak of abundance of nanoeukaryotes observed at the surface suggested an increase in nutrients likely due to the vicinity of a cold cyclonic eddy. In contrast, in the salinity front along the isohaline 35 and anticyclonic eddy located around 22.83° N, the mainly constant distribution of Prochlorococcus from the surface down to 150 m characterised the dominance by these microorganisms in high salinity and temperature zone. Results suggested that the distribution of nanocyanobacteria-like is also closely linked to the salinity front rather than low phosphate concentration. The maximum abundance of ultraphytoplankton was located above the SubTropical Counter Current (STCC) at depths > 100 m where higher nutrient concentrations were measured. Finally, comparison of the ultraphytoplankton concentrations during El Niño (from the literature) and La Niña (this study) conditions seems to demonstrate that La Niña conditions lead to higher concentrations of Synechococcus in the Subtropical gyre and a lower abundance of Synechococcus in the Kuroshio region. Our results suggest that the west part of NPSG is a complex area, where different water masses, salinity fronts and eddies lead to a heterogeneous distribution of ultraphytoplankton assemblages in the upper layer of the water column.


2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S203
Author(s):  
Mathias Girault ◽  
Hisayuki Arakawa ◽  
Gerald Gregori ◽  
Fuminori Hashihama ◽  
Hyonchol Kim ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Mary R. Gradoville ◽  
Byron C. Crump ◽  
Ricardo M. Letelier ◽  
Matthew J. Church ◽  
Angelicque E. White

Sign in / Sign up

Export Citation Format

Share Document