scholarly journals Multiple spatial reference frames underpin perceptual recalibration to audio-visual discrepancies

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251827
Author(s):  
David Mark Watson ◽  
Michael A. Akeroyd ◽  
Neil W. Roach ◽  
Ben S. Webb

In dynamic multisensory environments, the perceptual system corrects for discrepancies arising between modalities. For instance, in the ventriloquism aftereffect (VAE), spatial disparities introduced between visual and auditory stimuli lead to a perceptual recalibration of auditory space. Previous research has shown that the VAE is underpinned by multiple recalibration mechanisms tuned to different timescales, however it remains unclear whether these mechanisms use common or distinct spatial reference frames. Here we asked whether the VAE operates in eye- or head-centred reference frames across a range of adaptation timescales, from a few seconds to a few minutes. We developed a novel paradigm for selectively manipulating the contribution of eye- versus head-centred visual signals to the VAE by manipulating auditory locations relative to either the head orientation or the point of fixation. Consistent with previous research, we found both eye- and head-centred frames contributed to the VAE across all timescales. However, we found no evidence for an interaction between spatial reference frames and adaptation duration. Our results indicate that the VAE is underpinned by multiple spatial reference frames that are similarly leveraged by the underlying time-sensitive mechanisms.

2019 ◽  
Author(s):  
Norbert Kopčo ◽  
Peter Lokša ◽  
I-fan Lin ◽  
Jennifer Groh ◽  
Barbara Shinn-Cunningham

ABSTRACTVisual calibration of auditory space requires re-alignment of representations differing in 1) format (auditory hemispheric channels vs. visual maps) and 2) reference frames (head-centered vs. eye-centered). Here, a ventriloquism paradigm from Kopčo et al. (J Neurosci, 29, 13809-13814) was used to examine these processes in humans and monkeys for ventriloquism induced within one spatial hemifield. Results show that 1) the auditory representation is adapted even by aligned audio-visual stimuli, and 2) the spatial reference frame is primarily head-centered in humans but mixed in monkeys. These results support the view that the ventriloquism aftereffect is driven by multiple spatially non-uniform processes.PACS numbers: 43.66.Pn, 43.66.Qp, 43.66.Mk


Author(s):  
Steven M. Weisberg ◽  
Anjan Chatterjee

Abstract Background Reference frames ground spatial communication by mapping ambiguous language (for example, navigation: “to the left”) to properties of the speaker (using a Relative reference frame: “to my left”) or the world (Absolute reference frame: “to the north”). People’s preferences for reference frame vary depending on factors like their culture, the specific task in which they are engaged, and differences among individuals. Although most people are proficient with both reference frames, it is unknown whether preference for reference frames is stable within people or varies based on the specific spatial domain. These alternatives are difficult to adjudicate because navigation is one of few spatial domains that can be naturally solved using multiple reference frames. That is, while spatial navigation directions can be specified using Absolute or Relative reference frames (“go north” vs “go left”), other spatial domains predominantly use Relative reference frames. Here, we used two domains to test the stability of reference frame preference: one based on navigating a four-way intersection; and the other based on the sport of ultimate frisbee. We recruited 58 ultimate frisbee players to complete an online experiment. We measured reaction time and accuracy while participants solved spatial problems in each domain using verbal prompts containing either Relative or Absolute reference frames. Details of the task in both domains were kept as similar as possible while remaining ecologically plausible so that reference frame preference could emerge. Results We pre-registered a prediction that participants would be faster using their preferred reference frame type and that this advantage would correlate across domains; we did not find such a correlation. Instead, the data reveal that people use distinct reference frames in each domain. Conclusion This experiment reveals that spatial reference frame types are not stable and may be differentially suited to specific domains. This finding has broad implications for communicating spatial information by offering an important consideration for how spatial reference frames are used in communication: task constraints may affect reference frame choice as much as individual factors or culture.


2010 ◽  
Vol 10 (7) ◽  
pp. 1063-1063
Author(s):  
J. C. Dessing ◽  
J. D. Crawford ◽  
W. P. Medendorp

With “Spatial Reference Frames” we refer to systems of coordinates by which the central nervous system encodes the relative positions of objects in space, including that of the body itself. A reference system is a way of representing the positions of the subjects / objects in space. The spatial position of an object can be represented in the brain with respect to different classes of reference points, which may be related or not to the position of the subject. In a nutshell, we can say that there are two types of transformations of space imagery: the allocentric spatial transformations, that involve a system of representation from object to object and encode information about the location of an object or its parts in relation to other objects, and egocentric spatial transformations that involve a system of subject-object representation. The human being switches from one code to another, depending on the contingent requirements, giving preference to one or another system according to a set of heterogeneous factors. The gender difference (male / female), for example, plays a key role. Even the individual cognitive strategies make use of different representations in a significantly different way. Manipulation of spatial reference systems constitute a “transnosographic trait” in various neurological and psychiatric disorders. Each of these diseases (autism, schizophrenia, epilepsy, spatial anxiety, Parkinson) reaches some of the structures involved in the manipulation of referential of different spaces. The chapter illustrates Piaget's study on the representation of space in the child and the use of different spatial coding systems, and provides a brief overview of the scientific debate following the Piagetian position.


Cognition ◽  
2020 ◽  
Vol 204 ◽  
pp. 104349
Author(s):  
Matthew R. Longo ◽  
Sampath S. Rajapakse ◽  
Adrian J.T. Alsmith ◽  
Elisa R. Ferrè

Sign in / Sign up

Export Citation Format

Share Document