scholarly journals On the stability of queues with the dropping function

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259186
Author(s):  
Andrzej Chydzinski

In this paper, the stability of the queueing system with the dropping function is studied. In such system, every incoming job may be dropped randomly, with the probability being a function of the queue length. The main objective of the work is to find an easy to use condition, sufficient for the instability of the system, under assumption of Poisson arrivals and general service time distribution. Such condition is found and proven using a boundary for the dropping function and analysis of the embedded Markov chain. Applicability of the proven condition is demonstrated on several examples of dropping functions. Additionally, its correctness is confirmed using a discrete-event simulator.

1997 ◽  
Vol 34 (03) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


1990 ◽  
Vol 27 (1) ◽  
pp. 227-231 ◽  
Author(s):  
Jacqueline Loris-Teghem

We consider a single-server infinite-capacity queueing sysem with Poisson arrivals of customer groups of random size and a general service time distribution, the server of which applies a general exhaustive service vacation policy. We are concerned with the steady-state distribution of the actual waiting time of a customer arriving while the server is active.


1990 ◽  
Vol 27 (01) ◽  
pp. 227-231 ◽  
Author(s):  
Jacqueline Loris-Teghem

We consider a single-server infinite-capacity queueing sysem with Poisson arrivals of customer groups of random size and a general service time distribution, the server of which applies a general exhaustive service vacation policy. We are concerned with the steady-state distribution of the actual waiting time of a customer arriving while the server is active.


1998 ◽  
Vol 12 (1) ◽  
pp. 49-68 ◽  
Author(s):  
Serguei Foss ◽  
Günter Last

We consider a polling system with a finite number of stations fed by compound Poisson arrival streams of customers asking for service. A server travels through the system. Upon arrival at a nonempty station i, say, with x > 0 waiting customers, the server tries to serve there a random number B of customers if the queue length has not reached a random level C < x before the server has completed the B services. The random variable B may also take the value ∞ so that the server has to provide service as long as the queue length has reached size C. The distribution Hi, x of the air (B, C) may depend on i and x while the service time distribution is allowed to depend on i. The station to be visited next is chosen among some neighbors according to a greedy policy. That is to say that the server always tries to walk to the fullest station in his well-defined neighborhood. Under appropriate independence assumptions two conditions are established that are sufficient for stability and sufficient for instability. Some examples will illustrate the relevance of our results.


1997 ◽  
Vol 34 (3) ◽  
pp. 773-784 ◽  
Author(s):  
Onno J. Boxma ◽  
Uri Yechiali

This paper considers a single-server queue with Poisson arrivals and multiple customer feedbacks. If the first service attempt of a newly arriving customer is not successful, he returns to the end of the queue for another service attempt, with a different service time distribution. He keeps trying in this manner (as an ‘old' customer) until his service is successful. The server operates according to the ‘gated vacation' strategy; when it returns from a vacation to find K (new and old) customers, it renders a single service attempt to each of them and takes another vacation, etc. We study the joint queue length process of new and old customers, as well as the waiting time distribution of customers. Some extensions are also discussed.


1981 ◽  
Vol 18 (01) ◽  
pp. 190-203 ◽  
Author(s):  
Guy Latouche

A queueing system with exponential service and correlated arrivals is analysed. Each interarrival time is exponentially distributed. The parameter of the interarrival time distribution depends on the parameter for the preceding arrival, according to a Markov chain. The parameters of the interarrival time distributions are chosen to be equal to a common value plus a factor ofε, where ε is a small number. Successive arrivals are then weakly correlated. The stability condition is found and it is shown that the system has a stationary probability vector of matrix-geometric form. Furthermore, it is shown that the stationary probabilities for the number of customers in the system, are analytic functions ofε, for sufficiently smallε, and depend more on the variability in the interarrival time distribution, than on the correlations.


1994 ◽  
Vol 31 (02) ◽  
pp. 476-496
Author(s):  
Ho Woo Lee ◽  
Soon Seok Lee ◽  
Jeong Ok Park ◽  
K. C. Chae

We consider an Mx /G/1 queueing system with N-policy and multiple vacations. As soon as the system empties, the server leaves for a vacation of random length V. When he returns, if the queue length is greater than or equal to a predetermined value N(threshold), the server immediately begins to serve the customers. If he finds less than N customers, he leaves for another vacation and so on until he finally finds at least N customers. We obtain the system size distribution and show that the system size decomposes into three random variables one of which is the system size of ordinary Mx /G/1 queue. The interpretation of the other random variables will be provided. We also derive the queue waiting time distribution and other performance measures. Finally we derive a condition under which the optimal stationary operating policy is achieved under a linear cost structure.


1973 ◽  
Vol 74 (1) ◽  
pp. 141-143 ◽  
Author(s):  
D. N. Shanbhag

Consider a queueing system M/G/s with the arrival intensity λ, the service time distribution function B(t) (B(0) < 1) having a finite mean and the waiting room size N ≤ ∞. If s < ∞ and N = ∞, we shall also assume that its relative traffic intensity is less than 1. Since the arrival process of this system is Poisson, it is immediate that in this case the distribution of the number of arrivals during an interval is infinitely divisible.


1997 ◽  
Vol 34 (3) ◽  
pp. 767-772 ◽  
Author(s):  
John A. Barnes ◽  
Richard Meili

The points of a non-stationary Poisson process with periodic intensity are independently shifted forward in time in such a way that the transformed process is stationary Poisson. The mean shift is shown to be minimal. The approach used is to consider an Mt/Gt/∞ queueing system where the arrival process is a non-stationary Poisson with periodic intensity function. A minimal service time distribution is constructed that yields a stationary Poisson departure process.


Sign in / Sign up

Export Citation Format

Share Document