scholarly journals Deep brain stimulation in the subthalamic nuclei alters postural alignment and adaptation in Parkinson’s disease

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259862
Author(s):  
Per-Anders Fransson ◽  
Maria H. Nilsson ◽  
Stig Rehncrona ◽  
Fredrik Tjernström ◽  
Måns Magnusson ◽  
...  

Parkinson’s disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.

2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
J Gierthmühlen ◽  
P Arning ◽  
G Wasner ◽  
A Binder ◽  
J Herzog ◽  
...  

2019 ◽  
pp. 158-173

Background: Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by a dopamine deficiency that presents with motor symptoms. Visual disorders can occur concomitantly but are frequently overlooked. Deep brain stimulation (DBS) has been an effective treatment to improve tremors, stiffness and overall mobility, but little is known about its effects on the visual system. Case Report: A 75-year-old Caucasian male with PD presented with longstanding binocular diplopia. On baseline examination, the best-corrected visual acuity was 20/25 in each eye. On observation, he had noticeable tremors with an unsteady gait. Distance alternating cover test showed exophoria with a right hyperphoria. Near alternating cover test revealed a significantly larger exophoria accompanied by a reduced near point of convergence. Additional testing with a 24-2 Humphrey visual field and optical coherence tomography (OCT) of the nerve and macula were unremarkable. The patient underwent DBS implantation five weeks after initial examination, and the device was activated four weeks thereafter. At follow up, the patient still complained of intermittent diplopia. There was no significant change in the manifest refraction or prism correction. On observation, the patient had remarkably improved tremors with a steady gait. All parameters measured were unchanged. The patient was evaluated again seven months after device activation. Although vergence ranges at all distances were improved, the patient was still symptomatic for intermittent diplopia. OCT scans of the optic nerve showed borderline but symmetric thinning in each eye. All other parameters measured were unchanged. Conclusion: The case found no significant changes on ophthalmic examination after DBS implantation and activation in a patient with PD. To the best of the authors’ knowledge, there are no other cases in the literature that investigated the effects of DBS on the visual system pathway in a patient with PD before and after DBS implantation and activation.


Sign in / Sign up

Export Citation Format

Share Document