scholarly journals B cells infected with Type 2 Epstein-Barr virus (EBV) have increased NFATc1/NFATc2 activity and enhanced lytic gene expression in comparison to Type 1 EBV infection

2020 ◽  
Vol 16 (2) ◽  
pp. e1008365 ◽  
Author(s):  
James C. Romero-Masters ◽  
Shane M. Huebner ◽  
Makoto Ohashi ◽  
Jillian A. Bristol ◽  
Bayleigh E. Benner ◽  
...  
2010 ◽  
Vol 84 (19) ◽  
pp. 10329-10343 ◽  
Author(s):  
Amy L. Ellis-Connell ◽  
Tawin Iempridee ◽  
Iris Xu ◽  
Janet E. Mertz

ABSTRACT We previously showed that the cellular proteins ZEB1 and ZEB2/SIP1 both play key roles in regulating the latent-lytic switch of Epstein-Barr Virus (EBV) by repressing BZLF1 gene expression. We investigated here the effects of cellular microRNA (miRNA) 200 (miR200) family members on the EBV infection status of cells. We show that miR200b and miR429, but not miR200a, can induce EBV-positive cells into lytic replication by downregulating expression of ZEB1 and ZEB2, leading to production of infectious virus. The levels of miR200 family members in EBV-infected cells strongly negatively correlated with the levels of the ZEBs (e.g., −0.89 [P < 0.001] for miR429 versus ZEB1) and positively correlated with the degree of EBV lytic gene expression (e.g., 0.73 [P < 0.01] for miR429 versus BZLF1). The addition of either miR200b or miR429 to EBV-positive cells led to EBV lytic reactivation in a ZEB-dependent manner; inhibition of these miRNAs led to decreased EBV lytic gene expression. The degree of latent infection by an EBV mutant defective in the primary ZEB-binding site of the EBV BZLF1 promoter was not affected by the addition of these miRNAs. Furthermore, EBV infection of primary blood B cells led to downregulation of these miRNAs and upregulation of ZEB levels. Thus, we conclude that miRNAs 200b and 429 are key regulators via their effects on expression of ZEB1 and ZEB2 of the switch between latent and lytic infection by EBV and, therefore, potential targets for development of new lytic induction therapeutics with which to treat patients with EBV-associated malignancies.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1579-1585 ◽  
Author(s):  
V Schuster ◽  
G Ott ◽  
S Seidenspinner ◽  
HW Kreth

In the present study, Epstein-Barr virus (EBV) isolates from 18 malignant tumors (angioimmunoblastic lymphadenopathy [AILD], n = 4; Hodgkin's disease [HD], n = 3; pleomorphic T-cell non-Hodgkin's lymphoma [T-NHL], n = 1; B-cell non-Hodgkin's lymphoma [B-NHL], n = 8; gastric carcinoma, n = 2) as well as from 10 tonsils of EBV- seropositive children and from peripheral blood mononuclear cells of 12 children with uncomplicated infectious mononucleosis (IM) and of a boy with severe chronic active EBV infection were genotyped in the EBV nuclear antigen-2 (EBNA-2) gene. A total of 40 of 41 isolates harbored EBV type 1; in 1 specimen (tonsil), only EBV type 2 was found. Further molecular characterization of EBV type-1 wild-type isolates in the EBNA- 2 gene and in the 40-kb distant EBV-encoded small RNAs (EBER) region showed that different groups of stable EBV type-1 variant strains exist in vivo both in benign and malignant lymphatic tissue. Group 1 is composed of EBV type-1 isolates (B-NHL, n = 3; T-NHL, n = 1; HD, n = 1; IM, n = 4) that showed a B95–8-like DNA sequence pattern in both viral genes. Group 2 isolates (HD, n = 1; AILD, n = B-NHL, n = 1; tonsils of EBV-seropositive children, n = 9; IM, n = 20 showed a nucleotide change at position 49095 in the EBNA-2 gene, leading to an amino acid substitution (Pro-->Ser), and EBV type-2 sequences in the EBER region. EBV type-1 isolates that fall into group 3 (AILD, n = 3; HD, n = 1; B- NHL, n = 4; gastric carcinoma, n = 2; IM, n = 6; severe chronic active EBV infection, n = 1) were characterized by typical nucleotide changes and a 3-bp insertion (CTC; extra Leu residue) in the EBNA-2 gene and an EBV type-2-specific sequence pattern in the EBER region. These EBV type- 1 variant strains may represent the most prevalent circulating EBV type- 1 strains in the exposed population and seem not to be restricted to a certain EBV-associated disease or tumor type. However, analysis of more EBV isolates from benign and malignant lesions must show whether more EBV type-1 substrains exist in vivo.


2015 ◽  
Vol 89 (14) ◽  
pp. 7120-7132 ◽  
Author(s):  
Subing Cao ◽  
Walter Moss ◽  
Tina O'Grady ◽  
Monica Concha ◽  
Michael J. Strong ◽  
...  

ABSTRACTWe have previously shown that the Epstein-Barr virus (EBV) likely encodes hundreds of viral long noncoding RNAs (vlncRNAs) that are expressed during reactivation. Here we show that the EBV latency origin of replication (oriP) is transcribed bi-directionally during reactivation and that both leftward (oriPtLs) and rightward (oriPtRs) transcripts are largely localized in the nucleus. While the oriPtLs are most likely noncoding, at least some of the oriPtRs contain the BCRF1/vIL10 open reading frame. Nonetheless, oriPtR transcripts with long 5′ untranslated regions may partially serve noncoding functions. Both oriPtL and oriPtR transcripts are expressed with late kinetics, and their expression is inhibited by phosphonoacetic acid. RNA sequencing (RNA-seq) analysis showed that oriPtLs and oriPtRs exhibited extensive “hyperediting” at their Family of Repeat (FR) regions. RNA secondary structure prediction revealed that the FR region of both oriPtLs and oriPtRs may form large evolutionarily conserved and thermodynamically stable hairpins. The double-stranded RNA-binding protein and RNA-editing enzyme ADAR was found to bind to oriPtLs, likely facilitating editing of the FR hairpin. Further, the multifunctional paraspeckle protein, NONO, was found to bind to oriPt transcripts, suggesting that oriPts interact with the paraspeckle-based innate antiviral immune pathway. Knockdown and ectopic expression of oriPtLs showed that it contributes to global viral lytic gene expression and viral DNA replication. Together, these results show that these new vlncRNAs interact with cellular innate immune pathways and that they help facilitate progression of the viral lytic cascade.IMPORTANCERecent studies have revealed that the complexity of lytic herpesviral transcriptomes is significantly greater than previously appreciated with hundreds of viral long noncoding RNAs (vlncRNAs) being recently discovered. Work on cellular lncRNAs over the past several years has just begun to give us an initial appreciation for the array of functions they play in complex formation and regulatory processes in the cell. The newly identified herpesvirus lncRNAs are similarly likely to play a variety of different functions, although these functions are likely tailored to specific needs of the viral infection cycles. Here we describe novel transcripts derived from the EBV latency origin of replication. We show that they are hyperedited, that they interact with a relatively newly appreciated antiviral pathway, and that they play a role in facilitating viral lytic gene expression. These investigations are a starting point to unraveling the complex arena of vlncRNA function in herpesvirus lytic replication.


2019 ◽  
Vol 21 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Lawrence T. C. Ong ◽  
Grant P. Parnell ◽  
Ali Afrasiabi ◽  
Graeme J. Stewart ◽  
Sanjay Swaminathan ◽  
...  

Abstract Epstein–Barr Virus (EBV) infection appears to be necessary for the development of Multiple Sclerosis (MS), although the specific mechanisms are unknown. More than 200 single-nucleotide polymorphisms (SNPs) are known to be associated with the risk of developing MS. About a quarter of these are also highly associated with proximal gene expression in B cells infected with EBV (lymphoblastoid cell lines—LCLs). The DNA of LCLs is hypomethylated compared with both uninfected and activated B cells. Since methylation can affect gene expression, and so cell differentiation and immune evasion, we hypothesised that EBV-driven hypomethylation may affect the interaction between EBV infection and MS. We interrogated an existing dataset comprising three individuals with whole-genome bisulfite sequencing data from EBV transformed B cells and CD40L-activated B cells. DNA methylation surrounding MS risk SNPs associated with gene expression in LCLs (LCLeQTL) was less likely to be hypomethylated than randomly selected chromosomal regions. Differential methylation was independent of genomic features such as promoter regions, but genes preferentially expressed in EBV-infected B cells, including the LCLeQTL genes, were underrepresented in the hypomethylated regions. Our data does not indicate MS genetic risk is affected by EBV hypomethylation.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Joshua E. Messinger ◽  
Joanne Dai ◽  
Lyla J. Stanland ◽  
Alexander M. Price ◽  
Micah A. Luftig

ABSTRACTDeciphering the molecular pathogenesis of virally induced cancers is challenging due, in part, to the heterogeneity of both viral gene expression and host gene expression. Epstein-Barr virus (EBV) is a ubiquitous herpesvirus prevalent in B-cell lymphomas of immune-suppressed individuals. EBV infection of primary human B cells leads to their immortalization into lymphoblastoid cell lines (LCLs), serving as a model of these lymphomas. In previous studies, reports from our laboratory have described a temporal model for immortalization with an initial phase characterized by expression of Epstein-Barr nuclear antigens (EBNAs), high levels of c-Myc activity, and hyperproliferation in the absence of the latent membrane proteins (LMPs), called latency IIb. This is followed by the long-term outgrowth of LCLs expressing the EBNAs along with the LMPs, particularly NFκB-activating LMP1, defining latency III. However, LCLs express a broad distribution of LMP1 such that a subset of these cells express LMP1 at levels similar to those seen in latency IIb, making it difficult to distinguish these two latency states. In this study, we performed mRNA sequencing (mRNA-Seq) on early EBV-infected latency IIb cells and latency III LCLs sorted by NFκB activity. We found that latency IIb transcriptomes clustered independently from latency III independently of NFκB. We identified and validated mRNAs defining these latency states. Indeed, we were able to distinguish latency IIb cells from LCLs expressing low levels of LMP1 using multiplex RNA-fluorescencein situhybridization (RNA-FISH) targeting EBVEBNA2orLMP1and humanCCR7orMGST1. This report defines latency IIb as a bona fide latency state independent from latency III and identifies biomarkers for understanding EBV-associated tumor heterogeneity.IMPORTANCEEBV is a ubiquitous pathogen, with >95% of adults harboring a life-long latent infection in memory B cells. In immunocompromised individuals, latent EBV infection can result in lymphoma. The established expression profile of these lymphomas is latency III, which includes expression of all latency genes. However, single-cell analysis of EBV latent gene expression in these lymphomas suggests heterogeneity where most cells express the transcription factor, EBNA2, and only a fraction of the cells express membrane protein LMP1. Our work describes an early phase after infection where the EBNAs are expressed without LMP1, called latency IIb. However, LMP1 levels within latency III vary widely, making these states hard to discriminate. This may have important implications for therapeutic responses. It is crucial to distinguish these states to understand the molecular pathogenesis of these lymphomas. Ultimately, better tools to understand the heterogeneity of these cancers will support more-efficacious therapies in the future.


Sign in / Sign up

Export Citation Format

Share Document