scholarly journals Moving Average for Continuous Quality Control: Time to Move to Implementation in Daily Practice?

2017 ◽  
Vol 63 (5) ◽  
pp. 1041-1043 ◽  
Author(s):  
Huub H van Rossum ◽  
Hans Kemperman
2019 ◽  
Vol 57 (6) ◽  
pp. 773-782 ◽  
Author(s):  
Huub H. van Rossum

Abstract Moving average quality control (MA QC) was described decades ago as an analytical quality control instrument. Although a potentially valuable tool, it is struggling to meet expectations due to its complexity and need for evidence-based guidance. For this review, relevant literature and the world wide web were examined in order to (i) explain the basic concepts and current understanding of MA QC, (ii) discuss moving average (MA) optimization methods, (iii) gain insight into practical aspects related to applying MA in daily practice and (iv) describe future prospects to enable more widespread acceptance and application of MA QC. Each of the MA QC optimization methods currently available has their own advantages and disadvantages. Recently developed simulation methods provide realistic error detecting properties for MA QC and are available for laboratories. Operational MA management issues have been identified that allow developers of MA software to upgrade their packages to support optimal MA QC application and guide laboratories on MA management issues, such as MA alarm workup. The new insights into MA QC characteristics and operational issues, together with supporting online tools, may promote more widespread acceptance and application of MA QC.


Author(s):  
Huub H. van Rossum ◽  
Andreas Bietenbeck ◽  
Mark A. Cervinski ◽  
Alex Katayev ◽  
Tze Ping Loh ◽  
...  

Abstract Background In recent years, there has been renewed interest in the “old” average of normals concept, now generally referred to as moving average quality control (MA QC) or patient-based real-time quality control (PBRTQC). However, there are some controversies regarding PBRTQC which this review aims to address while also indicating the current status of PBRTQC. Content This review gives the background of certain newly described optimization and validation methods. It also indicates how QC plans incorporating PBRTQC can be designed for greater effectiveness and/or (cost) efficiency. Furthermore, it discusses controversies regarding the complexity of obtaining PBRTQC settings, the replacement of iQC, and software functionality requirements. Finally, it presents evidence of the added value and practicability of PBRTQC. Outlook Recent developments in, and availability of, simulation methods to optimize and validate laboratory-specific PBRTQC procedures have enabled medical laboratories to implement PBRTQC in their daily practice. Furthermore, these methods have made it possible to demonstrate the practicability and added value of PBRTQC by means of two prospective “clinical” studies and other investigations. Although internal QC will remain an essential part of any QC plan, applying PBRTQC can now significantly improve its performance and (cost) efficiency.


2017 ◽  
Vol 55 (8) ◽  
pp. 1142-1151 ◽  
Author(s):  
Huub H. van Rossum ◽  
Hans Kemperman

Abstract Background: General application of a moving average (MA) as continuous analytical quality control (QC) for routine chemistry assays has failed due to lack of a simple method that allows optimization of MAs. A new method was applied to optimize the MA for routine chemistry and was evaluated in daily practice as continuous analytical QC instrument. Methods: MA procedures were optimized using an MA bias detection simulation procedure. Optimization was graphically supported by bias detection curves. Next, all optimal MA procedures that contributed to the quality assurance were run for 100 consecutive days and MA alarms generated during working hours were investigated. Results: Optimized MA procedures were applied for 24 chemistry assays. During this evaluation, 303,871 MA values and 76 MA alarms were generated. Of all alarms, 54 (71%) were generated during office hours. Of these, 41 were further investigated and were caused by ion selective electrode (ISE) failure (1), calibration failure not detected by QC due to improper QC settings (1), possible bias (significant difference with the other analyzer) (10), non-human materials analyzed (2), extreme result(s) of a single patient (2), pre-analytical error (1), no cause identified (20), and no conclusion possible (4). Conclusions: MA was implemented in daily practice as a continuous QC instrument for 24 routine chemistry assays. In our setup when an MA alarm required follow-up, a manageable number of MA alarms was generated that resulted in valuable MA alarms. For the management of MA alarms, several applications/requirements in the MA management software will simplify the use of MA procedures.


2019 ◽  
Author(s):  
Christina Lohr ◽  
Johannes Kiesel ◽  
Stephanie Luther ◽  
Johannes Hellrich ◽  
Tobias Kolditz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document