Natural and Somatic Embryo Development in Loblolly Pine: Gene Expression Studies Using Differential Display and DNA Arrays

1999 ◽  
Vol 77 (1-3) ◽  
pp. 5-18 ◽  
Author(s):  
John Cairney ◽  
Nanfei Xu ◽  
Gerald S. Pullman ◽  
Vincent T. Ciavatta ◽  
Barbara Johns
2006 ◽  
Vol 62 (1-2) ◽  
pp. 1-14 ◽  
Author(s):  
Ping Che ◽  
Tanzy M. Love ◽  
Bronwyn R. Frame ◽  
Kan Wang ◽  
Alicia L. Carriquiry ◽  
...  

Author(s):  
John Cairney ◽  
Nanfei Xu ◽  
Gerald S. Pullman ◽  
Vincent T. Ciavatta ◽  
Barbara Johns

1990 ◽  
Vol 20 (6) ◽  
pp. 810-817 ◽  
Author(s):  
M. R. Becwar ◽  
R. Nagmani ◽  
S. R. Wann

Immature zygotic embryo explants (isolated or with intact megagametophytes) from 10 loblolly pine (Pinustaeda L.) clones (7-34, 7-56, 11-9, 11-16, 11-25, 10-1003, 10-1007, 10-1011, 10-1018, and 10-1019) were surveyed for their potential to form embryogenic tissue from the suspensor region of zygotic embryos. After over 14 000 explants were cultured, embryogenic cultures were initiated from explants of 8 of the 10 clones; only explants from clones 11-25 and 10-1019 were not responsive. Embryogenic tissue was initiated from zygotic embryos with intact megagametophytes on MSG basal medium with no exogenous plant growth regulators or with 2–5 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) and 0–1 mg/L N6-benzyladenine (BA). The highest initiation frequency (5%) was obtained from isolated zygotic embryos of clone 7-34 less than 0.5 mm in length just prior to cotyledon primordia development on DCR basal medium with 3 mg/L 2,4-D and 0.5 mg/L BA. Two types of embryogenic cultures were maintained on medium with 2,4-D and BA: (i) those that contained pre-embryonal masses of cells interspersed with unaggregated suspensorlike cells, but which rarely contained well-formed somatic embryos, and (ii) those that frequently contained well-formed somatic embryos. Somatic embryo development from both types of cultures progressed to a precotyledonary stage on medium with 2.6 mg/L abscisic acid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kim Hoa Ho ◽  
Annarita Patrizi

AbstractChoroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document