Synthesis and identification of copper (II) complexes using phosphonium salt resulting from the combination of trinylphosphine and ethyl bromoacetate, using stereoscopic methods

2017 ◽  
Vol 6 (7) ◽  
pp. 535-541
Synlett ◽  
2019 ◽  
Vol 30 (03) ◽  
pp. 338-342
Author(s):  
Yuta Suganuma ◽  
Shun Saito ◽  
Yuichi Kobayashi

Wittig reactions using carboxy (CO2H) ylides derived from a carboxylic phosphonium salt and NaN(TMS)2 (NaHMDS) in a 1:1 ratio were applied to the synthesis of 8-HEPE and 10-HDoHE, which are metabolites of eicosapentaenoic acid and docosahexaenoic acid, respectively. The attempted Wittig reaction of 3-(TBS-oxy)pentadeca-4E,6Z,9Z,12Z-tetraenal with the carboxy ylide (2 equiv) derived from Br– Ph3P+(CH2)4CO2H and NaHMDS (1:1) competed with the elimination of the TBS-oxy group at C3 to give a mixture of the Wittig product and the elimination product in 45–50% and 30–40% yields, respectively. The elimination was suppressed completely by using three equiv of the carboxy ylides in THF/HMPA (7–8:1), and the subsequent desilylation gave 8-HEPE in (R)- and (S)-forms. Similarly, both enantiomers of 10-HDoHE were synthesized.


ChemSusChem ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1825-1833 ◽  
Author(s):  
Yuya Hu ◽  
Sandra Peglow ◽  
Lars Longwitz ◽  
Marcus Frank ◽  
Jan Dirk Epping ◽  
...  
Keyword(s):  

2016 ◽  
Vol 18 (17) ◽  
pp. 4611-4615 ◽  
Author(s):  
Shiyao Liu ◽  
Naoki Suematsu ◽  
Keiji Maruoka ◽  
Seiji Shirakawa

An efficient synthesis of cyclic carbonates from epoxides and CO2 under mild reaction conditions was achieved via the use of a designed bifunctional quaternary phosphonium iodide catalyst.


1992 ◽  
Vol 70 (5) ◽  
pp. 1492-1505 ◽  
Author(s):  
Peter Yates ◽  
Magdy Kaldas

Treatment of 2-norobornene-1-carboxylic acid (7) with one equivalent of methyllithium in ether followed by a second molar equivalent after dilution with tetrahydrofuran gave 1-(norborn-2-en-lyl)ethanone (10) and only a trace of the tertiary alcohol 11. Reaction of 7 with formic acid followed by hydrolysis gave a 4:3 mixture of exo-3- and exo-2-hydroxynorbornane-1-carboxylic acid (16 and 17), whereas oxymercuration–demercuration gave only the exo-3-hydroxy isomer 16. Oxidation of 16 and 17 gave 3- and 2-oxonorbornane-1-carboxylic acid (27 and 29), respectively. Oxymercuration–demercuration of 10 gave exclusively 1-(exo-3-hydroxynorborn-1-yl)ethanone (30), which was also prepared by treatment of 16 with methyllithium in analogous fashion to that used for the conversion of 7 to 10. Oxidation of 30 gave 1-(3-oxonorborn-1-yl)ethanone (1). Dehydrobromination of exo-2-bromonorbornane-1-acetic acid and dehydration of 2-hydroxy-norbornane-2-acetic acid derivatives gave 1-(norborn-2-ylidene) acetic acid derivatives to the exclusion of norborn-2-ene-1 -acetic acid derivatives. Treatment of exo-5-acetyloxy-2-norobornanone (52) with ethyl bromoacetate and zinc gave ethyl exo-5-acetyloxy-2-hydroxynorbornane-(exo- and endo-2-acetate (53 and 54). Reaction of 53 with hydrogen bromide gave initially ethyl endo-3-acetyloxy-exo-6-bromonorbornane-1-acetate (59), which was subsequently converted to a mixture of 59 and its exo-3-acetyloxy epimer 61. Catalytic hydrogenation of this mixture gave a mixture of ethyl endo- and exo-3-acetyloxynorbornane-1 -acetate (62 and 63). Basic hydrolysis of this gave a mixture of the corresponding hydroxy acids, 70 and 71; the former was slowly converted to the latter at pH 5. Oxidation of the mixture of 70 and 71 gave 3-oxonorbornane-1-acetic acid (72). Treatment of the mixture with methyllithium as for 16 gave a mixture of 1-(endo- and exo-3-hydroxynorborn-1-yl)-2-propanone (73 and 74), which was oxidized to 1-(3-oxo-norborn-1-yl)-2-propanone (2). Reaction of exo-2-hydroxynorbornane-1-acetic acid lactone (75) with methyllithium in ether gave (1-(exo-2-hydroxynorborn-1-yl)-2-propanone (76), which on oxidation gave the 2-oxo isomer 78 of 2.


ChemPlusChem ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. 445-454 ◽  
Author(s):  
Mireia Rodriguez-Zubiri ◽  
Christine Baudequin ◽  
Aurélien Béthegnies ◽  
Jean-Jacques Brunet

2005 ◽  
Vol 127 (34) ◽  
pp. 11954-11955 ◽  
Author(s):  
Masaki Yamamura ◽  
Naokazu Kano ◽  
Takayuki Kawashima
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document